Project	IEEE 802.16 Broadband Wireless Access V	Vorking Group <http: 16="" ieee802.org=""></http:>	
Title	Support of Short Data Burst Transmission to/from an MSS in Idle Mode		
Date Submitted	2005-03-09		
Source(s)	Hang Zhang, Mo-Han Fong, Peiying Zhu, Wen Tong	mhfong@nortelnetworks.com	
	Nortel Networks	Voice: +1-613-765-8983	
	3500 Carling Avenue, Ottawa	Fax: +1-613-765-6717	
	Ontario, Canada K2H 8E9		
Re:	IEEE P802.16e/D6-2005		
Abstract		port short data burst transmission/reception to/from a rt short messaging type of service regardless of the pution. Revision is marked by change bar.	
Purpose	Review and Adopt the suggested changes into P8	02.16e/D6	
Notice	the contributing individual(s) or organization(s). The n	6. It is offered as a basis for discussion and is not binding on naterial in this document is subject to change in form and s) the right to add, amend or withdraw material contained	
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.		
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html , including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives		

1 Introduction

Short data burst (SDB) support for Idle mode MSS is an important feature to enable the support of short messaging type of services in 802.16e. The support of SDB to Idle mode MSS means that the SDB transmission/reception should not interrupt the mode of the MSS. SDB traffic associated with short messaging type of service is typically characterized by small amount of traffic with most likely irregular traffic arriving pattern. However, there are also other types of short data burst traffic with predictable traffic arrival pattern, such as system broadcast messages (e.g. DCD, UCD). This contribution addresses SDB traffic with both irregular and regular traffic arrival pattern.

Support of SDB for Idle Mode MSS, for traffic with irregular arrival pattern

The current p802.16e/D5a text does not support SDB transmission/reception for MSS in Idle mode. Based on the current standard, any DL or UL traffic, regardless the amount of the traffic, the MSS has to go back to normal mode before the data transmission can occur, and then go back to Idle mode again after the transmission. This will cause unnecessary signaling and processing overhead.

We propose the following to enable SDB for Idle mode MSS:

When the MSS enters Idle mode, the connection CID associated with SDB traffic, shall be kept at both MSS and the Paging Controller. All security related profiles shall also be kept by both sides

- Support of DL SDB:
 - When the BS intends to send SDB to the MSS, the BS shall send the MOB-PAG-ADV message to the MSS during the MSS' Paging Listening interval. The MSS performs paging-response by sending ranging code and RNG-REQ message. The purpose of this is to establish the location of the MSS.
 - The BS uses the RNG-RSP to indicate that the purpose of this paging is to send SDB to the MSS (by including Location Update Response/SDB indication TLV) and to indicate to the MSS to skip certain network entry procedures. The RNG-RSP message may include a TLV field called 'Temporary CID Replacement' to assign a temporary CID to the MSS in case the original CID of the SDB connection is not available at this new serving BS. The BS also indicates a SDB transmission window within where the SDB transmission happens.
 - The SDB is transmitted to the MSS similar to normal operation during the SDB transmission window.
 - The MSS shall resume Idle mode operation at the closure of the SDB transmission window.
- Support of UL SDB:
 - MSS performs initial ranging
 - MSS sends RNG-REQ to the target BS to indicate the Paging Controller ID from which the MSS has entered into Idle mode and to indicate an UL SDB request by including Location Update Request/SDB indication TLV. The purpose of this is both to establish the location of the MSS and to request a UL short data burst transmission.
 - The target BS obtains the security keying profiles from the Paging Controller from which the MSS has entered Idle mode
 - The BS then response with RNG-REQ message for ranging purpose. This message may include a TLV field called 'Temporary CID Replacement' in case the original CIDs of SDB service is not available at this BS. The BS also indicates a SDB transmission window within which the SDB transmission happens.
 - The target BS then uses normal UL MAP IE to assign UL resource
 - o The MSS shall resume Idle mode operation at the closure of the SDB Transmission window.

Support of SDB for Idle Mode MSS, for traffic with regular arrival pattern

For regular or predicable DL SDB traffic, such as UGS type of services and system configuration management message transmission, the chain-type pre-scheduling can be used to alert one or multiple MSS(s) in Idle mode to wake up to listen to DL traffic at a specific time offset. To enable the pre-scheduling, an SDB_forecast_IE is defined.

2 Proposed Text Changes

Remedy 1 - Support of SDB for Idle Mode MSS, for traffic with irregular arrival pattern

[Insert the following into the end of Section 6.3.21]

6.3.21.11 Procedure of Short Data Burst (SDB) Operation

At the Idle Mode initialization, a MSS may request for the support of short data burst during Idle Mode, by including the CID Retain Information TLV in DREG-REQ message. The serving BS may response this request by including the CID Retain Information TLV in DREG-CMD message. Similarly, a serving BS may request a MSS to enter Idle Mode by sending DREG-CMD message. In this case, the BS includes the CID Retain Information TLV in DREG-CMD message to inform the MSS that short data burst will be supported on the connections identified in the CID Retain Information TLV after the MSS enters Idle Mode. To support short data burst during Idle Mode, all necessary information associated with the connections identified in the CID Retain Information CID, service flows, registration, security, MAC context etc. shall be kept in the Paging Controller or other network entity administrating Idle Mode activity of MSSs.

6.3.21.11.1 Unscheduled Short Data Burst Transmission

In this mode, the MSS is not scheduled ahead of time to receive DL SDB traffic or transmit UL SDB traffic.

6.3.21.11.1.1 DL Short Data Burst Transmission

When there is pending SDB on the DL for the MSS, the BSs in the Paging Group of the MSS shall broadcast MOB PAG-ADV message that includes the MSS MAC address and Action Code set to 01-'performing Ranging to establish location and acknowledge message' during the BS Paging Interval per 6.3.21.7. After receiving the paging, the MSS shall perform the secure location update process with the target BS per 6.3.21.9.2.1. When the target BS replies with a RNG-RSP, it shall include the Location Update Response/SDB Indicationn TLV with Bit 1 set to 1, to indicate pending DL SDB transmission. The RNG-RSP shall also include a SDB Transmission Window TLV to indicate the time window during which DL SDB transmission will occur, starting from the current frame on which RNG-RSP is transmitted. The RNG-RSP may also include the Temporary CID Replacement TLV to assign temporary CID to the connection that has pending SDB traffic, if the current CID associated with the connection is not available at the target BS. During the SDB Transmission Window, the DL data transmission from the BS and data reception at the MSS is the same as normal operation. The MSS resumes the Idle Mode operation at the expiry of the SDB Transmission Window.

6.3.21.11.1.2 UL Short Data Burst Transmission

When there is pending SDB to be transmitted on the UL, the MSS shall conduct initial ranging with the target BS by sending a RNG-REQ including Ranging Purpose Indication TLV with Bit 2 set to 1, Paging Controller ID TLV. The RNG-REQ may also include the SDB Transmission Window TLV to request a time window during which UL SDB transmission will occur. The target BS shall reply with a RNG-RSP including Location Update Response/SDB Indication TLV with Bit 1 set to 1. The RNG-RSP shall also include a SDB Transmission Window TLV to indicate the time window during which UL SDB transmission will occur, starting from the current frame on which RNG-RSP is transmitted. The RNG-RSP may also include the Temporary CID Replacement TLV to assign temporary CID to the connection that has pending SDB traffic, if the current CID associated with the connection is not available at the target BS. During the SDB Transmission Window, the UL data transmission from the MSS and data reception at the BS is the same as normal operation. The MSS resumes the Idle Mode operation at the expiry of the SDB Transmission Window.

[Adding the following into the end of Section 6.3.2.3.26 De/Registration command (DREG-CMD) message]

The DREG-CMD may include the follow TLV if the BS intends to enable SDB during Idle Mode:

CID Retain Information

BS uses this TLV to indicate the CIDs that will be kept during Idle Mode for SDB traffic.

[Adding the following into the end of Section 6.3.2.3.42 MSS De-Registration Request (DREG-REQ) message]

The DREG-REQ may include the follow TLV if MSS requests for SDB support during Idle Mode:

CID Retain Information

MSS uses this TLV to request for the CIDs that will be kept during Idle Mode for SDB traffic.

[Modify the following text in Section 6.3.2.3.5 Ranging Request (RNG_REQ) message, page 35, starting line 29]

The following TLV parameter shall be included in the RNG-REQ message when the MSS is attempting to perform re-entry, or-handover or short data burst transmission:

HO Indication

Presence of item in message in combination with serving BS ID BSID indicates the MSS is currently

Network Re-entry from Idle Mode to the BS.

Location Update Request

Presence of item in message indicates MSS action of Idle Mode Location Update Process.

Ranging Purpose Indication

Presence of item in message indicates MSS action as follows:

Bit 0: set to 1, in combination with serving BS ID BSID indicates the MSS is currently

attempting to HO; or in combination with Paging Controller ID the MSS is attempting

Network Re-entry from Idle Mode to the BS.

Bit 1: set to 1, indicates MSS action of Idle Mode Location Update Process

Bit 2: set to 1, indicates MSS action to initiate short data burst transmission

[Modify the following text in Section 6.3.2.3.6 Ranging Response (RNG_RSP) message, page 30, starting line 15]

Location Update Response/SDB Indication

Response to Idle Mode Location Update Request/SDB Indication:

0x00=Failure of Idle Mode Location Update. The MSS shall perform Network Re entry from

Bit 0: set to 1 to indicate a success of Idle Mode Location Update; set to 0 to indicate a failure of Idle Mode Location Update.

Bit 1: set to 1 to indicate a DL short data burst indication

Bit 2-7: reserved

[Add the following text in Section 6.3.2.3.6 Ranging Response (RNG_RSP) message, page 36, after line 8]

The following TLVs may be included when BS responses to a UL SDB request from a MSS in Idle Mode or BS is to perform DL SDB transmission to a MSS in Idle Mode:

Temporary CID Replacement

The BS uses this field to assign temporary CID to the connection that has pending SDB traffic, if the current CID associated with the connection is not available at the BS. The values of this TLV include the current CID and the temporary assigned CID

SDB Transmission Window

The BS uses this field to provide the SDB transmission window value in unit of frames, during which SDB transmission will occur.

[Add short data burst indication into the Ranging Purpose Indication TLV in Table 364a – RNG_REQ Message Encodings].

Table 364a - RNG_REQ Message Encodings

Name	Type (1byte)	Length	Value
Ranging Purpose Indication	6	1	 #Bit 0: HO indication (when this bit set to 1 in combination with other included information elements indicates the MSS is currently attempting to HO or Network Re-entry from Idle Mode to the BS) Bit #1: Location Update Request (when this bit is set to 1, it indicates MSS action of Idle Mode Location Update Process)
			Bit #2: Short Data Burst TransmissionIndication (When this bit is set to 1, itindicates MSS action to initiate shortdata burst transmissionBit #3-7: reserved

[Adding one more row to the end of Table 362a]

Table 364a - RNG_REQ Message Encodings

Table 304a KIVG_KEQ Message Encodings					
Name	Туре	Length	Value		
	(1byte)				
SDB Transmission Window	<u>?</u>	<u>1</u>	This value indicates the SDB		
			transmission window in unit of frames		

[Modify the TLV "Location update response" in Table 367a – RNG_RSP Message Encodings].

Table 367a -	RNG	_RSP Message Encodings
14010 0074	14.0	_rusr intessuge Encounigs

Name	Туре	Length	Value
	(1byte)		
Location Update	23	1	0x00=Failure of Idle Mode Location
Response/SDB indication			Update. The MSS shall perform
_			Network Re entry from Idle Mode
			0x01=Success of Idle Mode Location
			Update
			0x10, 0x11: Reserved
			Bit 0: 0 = Failure of Idle Mode
			Location Update. The MSS shall
			perform Network Re-entry from Idle
			Mode.
			1= Success of Idle Mode
			Location Update
			<u>Lioeunon opuno</u>
			Bit 1: SDB indication
			Bits 2-7: Reserved

[Adding two more rows to the end of Table 367a]

Table 30/a - KNG_KSP Message Encodings					
Name	Туре	Length	Value		
	(1byte)	Ũ			
Temporary CID Replacement	<u>28</u>	<u>4</u>	Bit 0-16: current CID Bit 17-35: Temporary assigned CID		
SDB Transmission Window	<u>29</u>	<u>1</u>	This value indicates the SDB transmission window in unit of frames		

Table 367a - RNG_RSP Message Encodings

[Adding one raw to the end of Table in Section 11.14 DREG-CMD message encodings]

Name	Type (1byte)	Length	Value
CID Retain Information	<u>5</u>	<u>Variable</u>	<u>Bit 0-7: number of CIDs</u> <u>For (i=0;i<number cids;i++)<="" of="" u=""> <u>{ CID }</u></number></u>

[Adding one raw to the end of Table in Section 11.15 DREG-REQ message encodings]

Name	Type (1byte)	Length	Value
CID Retain Information	<u>54</u>	<u>Variable</u>	<u>Bit 0-7: number of CIDs</u> <u>For (i=0;i<number cids;i++)<="" of="" u=""> <u>{ CID }</u></number></u>

Remedy 2 – Support of SDB for Idle Mode MSS, for traffic with regular arrival pattern

[Insert the following section]

6.3.21.11.2 Scheduled Short Data Burst Transmission

In this mode, the BS informs the MSS ahead of time when the next SDB transmission will occur in either DL or UL, using the SDB_Forecast_IE as defined in Section 8.4.5.3.19 SDB Forecast IE. If SDB transmission is scheduled, the MSS shall scan, decode the DCD, UCD, DL-MAP and UL-MAP, and synchronize on the DL and UL of the Preferred BS in time for the MSS to decode SDB transmission from the BS or transmit SDB to the BS at the scheduled frame.

[Insert Section 8.4.5.326 SDB_Forecast IE]

8.4.5.3.19 SDB Forecast IE

This IE is used by a BS to alert MSSs regarding the future DL transmission and UL resource allocation. After receiving this IE, a MSS with its CID is included in this IE, shall monitor the DL-MAP and UL-MAP at the frame indicated by Frame offset in this IE. The MSS shall remain in normal operation until the next SDB Forecast IE is received.

Table XXX. SDB Forecast IE format

<u>Syntax</u>	Size	<u>Notes</u>
---------------	------	--------------

SDB_Forecast_IE() {		
Extended DIUC	<u>4 bits</u>	<u>0x07</u>
Length	<u>4 bits</u>	
<u>Num_MSSs</u>	<u>4 bits</u>	
For (i=0;i< Num_MSSs;i++) {		
CID	<u>16 bits</u>	
Frame_offset (p)	<u>4 bits</u>	To indicate the frame offset of 2 ^P from the
		current frame when the MSS shall
		monitor the DL-MAP and UL-MAP for
		DL or UL access allocation.
1		