Project	IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16
Title	Corrections in OFDMA Subcarrier Allocations
Date Submitted	2004-11-04
Source(s)	Myung-Kwang Byun, Yun-Jik Jang, mk.byun@samsung.com Jiho Jang, Jeong-Heon Kim, Seungjoo Maeng, Jaeho Jeon
	Samsung Electronics Co., Ltd.
	Dong Suwon P.O.Box 105
	416, Maetan-3dong, Yeongtong-gu,
	Suwon-city, Gyeonggi-do, Korea 442-600
Re:	IEEE P802.16e/D5-2004
Abstract	Editorial Correction in OFDMA Subcarrier Allocations
Purpose	Adopting of proposed method into P802.16e
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) < <u>http://ieee802.org/16/ipr/patents/policy.html></u> , including the statement "IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard."
	Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair < <u>mailto:r.b.marks@ieee.org</u> > as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site < <u>http://ieee802.org/16/ipr/patents/notices</u> >.

Corrections in OFDMA Subcarrier Allocations

1. Introduction

Some of the comments and the contributions accepted in the previous IEEE meeting are not reflected correctly in P802.16e/D5 standard.

In this contribution, the non-reflected parts are proposed again for the purpose of clarification.

2. Suggested Text Changes

(1) Replace text from page 217, line 43 to page 218, line 65 with the following text:

----- Start Text -----

8.4.6.1.2.3 Additional optional Symbol Structure for FUSC

[Add the following Tables to section 8.4.6.1.2.3:]

Table 310a—1024-FFT OFDMA downlink carrier allocations – Optional FUSC

Parameters	Value	Comments
Number of DC Subcarriers	1	
Number of Guard Subcarriers, Left	80	
Number of Guard Subcarriers, Right	79	
Number of Used Subcarriers(N _{used}) (Including all possible allocated pilots and the DC subcarrier)	865	
Number of Pilot Subcarriers	96	
Pilot Subcarrier Index	9k+3m+1 for k=0,195 and m=[symbol index] mod 3	Symbol of index 0 in pilot subcarrier index should be the first symbol of the frame.
Number of Data Subcarriers	768	
Number of Data Subcarriers per Subchannel	48	

Table 310b—512-FFT OFDMA downlink carrier allocations – Optional FUSC

Parameters	Value	Comments
Number of DC Subcarriers	1	
Number of Guard Subcarriers, Left	40	
Number of Guard Subcarriers, Right	39	
Number of Used Subcarriers(N _{used}) (Including all possible allocated pilots and the DC subcarrier)	433	
Number of Pilot Subcarriers	48	
Pilot Subcarrier Index	9k+3m+1 for k=0,147 and m=[symbol index] mod 3	Symbol of index 0 in pilot subcarrier index should be the first symbol of the frame.
Number of Data Subcarriers	384	
Number of Data Subcarriers per Subchannel	48	

Table 310c—128-FFT OFDMA FUSC downlink carrier allocations – Optional FUSCParametersValueComments

Number of DC Subcarriers	1	
Number of Guard Subcarriers, Left	10	
Number of Guard Subcarriers, Right	9	
Number of Used Subcarriers(N _{used}) (Including all possible allocated pilots and the DC subcarrier)	109	
Number of Pilot Subcarriers	12	
Pilot Subcarrier Index	9k+3m+1 for k=0,111 and m=[symbol index] mod 3	Symbol of index 0 in pilot subcarrier index should be the first symbol of the frame.
Number of Data Subcarriers	96	
Number of Data Subcarriers per Subchannel	48	

8.4.6.1.2.3.1 Downlink subchannels subcarrier allocation

[Replace section 8.4.6.1.2.3.1 'Downlink subchannels subcarrier allocation' with the following text:]

To allocate the subchannels, the whole data tones in a symbol are partitioned into groups of contiguous data subcarriers. Each subchannel consists of one subcarrier from each of these groups. The number of groups is therefore equal to number of data subcarriers per subchannel, and its value is 48. The number of the subcarriers in a group is equal to the number of subchannels, say Ns. As shown in Table 310e, Ns is determined by FFT size. The exact partitioning into subchannels is according to Equation (108a), called DL permutation formula.

$$Carrier(s,m) = \begin{cases} N_s \times k + [s + P_{1,c_1}(k') + P_{2,c_2}(k')], \ 0 < c_1, c_2 < N_s \\ N_s \times k + [s + P_{1,c_1}(k')], \ c_1 \neq 0, c_2 = 0 \\ N_s \times k + [s + P_{2,c_2}(k')], \ c_1 = 0, c_2 \neq 0 \\ N_s \times k + s, \ c_1 = 0, c_2 = 0 \end{cases}$$
(108a)

where

Carriers(s, m) = subcarrier index of m-th subcarrier in subchannel s

k=(m+s*23)mod 48, k'=k mod(Ns-1)

m = subcarrier-in-subchannel index from the set $[0\sim47]$

s = index number of a subchannel from the set [0~Ns-1]

 $P_{1,cl}(j) = j^{th}$ element of the sequence obtained by rotating basic permutation sequence P_1 cyclically to the left c1 times. See Table 310e.

 $P_{2,c2}(j) = j^{th}$ element of the sequence obtained by rotating basic permutation sequence P_2 cyclically to the left c2 times. See Table 310e. $c_1 = ID_{cell} \mod N_s$, $c_2 = \lfloor ID_{cell} / N_s \rfloor$, $0 \le c_1, c_2 \le N_s$

In Equation (108a), the operation in [] is done over GF(Ns). In GF(2^n), addition is binary XOR operation. For example, 13 + 4 in GF(2^n) is [(1101)₂ XOR (0100)₂]= (1001)₂ = 9, where (x)₂ represents binary expansion of x.

FFT size	Ns	Basic permutation sequences		
128	2	GF(2)	P ₁	1

			P ₂	1
512	8	GF(8)	P 1	1,2,4,3,6,7,5
			P ₂	1,4,6,5,2,3,7
1024	16	GF(16)	P 1	1, 2, 4, 8, 3, 6, 12, 11, 5, 10, 7, 14, 15, 13, 9
			P ₂	1, 4, 3, 12, 5, 7, 15, 9, 2, 8, 6, 11, 10, 14, 13

----- End Text -----

(2) Replace text from page 220, line 13 to page 225, line 28 with the following text:

----- Start Text -----

8.4.6.2.5 Additional optional Symbol Structure for PUSC

[ADD tables to section '8.4.6.2.5 Additional optional symbol structure for PUSC']

Parameter	Value	Notes
Number of DC Subcarriers	1	
Number of Guard Subcarriers, Left	80	
Number of Guard Subcarriers, Right	79	
Number of Used Subcarriers (N _{used}) (including all possible allocated pilots and the DC sibcarrier)	865	
Number of Subchannels	48	
Number of Tiles	288	
Number of Subcarriers per Tile	3	
Tiles per Subchannel	6	
Number of Data Subcarriers per Subchannel	48	

Table 313a—Optional 1024-FFT OFDMA uplink subcarrier allocations

Table 313b—Optional 512-FFT OFDMA uplink subcarrier allocations

Parameter	Value	Notes
Number of DC Subcarriers	1	
Number of Guard Subcarriers, Left	40	
Number of Guard Subcarriers, Right	39	
Number of Used Subcarriers (N _{used}) (including all possible allocated pilots and the DC sibcarrier)	433	
Number of Subchannels	24	
Number of Tiles	144	
Number of Subcarriers per Tile	3	
Tiles per Subchannel	6	
Number of Data Subcarriers per Subchannel	48	

Table 313c—Optional 128-FFT OFDMA uplink carrier allocations

Parameter	Value	Notes
Number of DC Subcarriers	1	
Number of Guard Subcarriers, Left	10	
Number of Guard Subcarriers, Right	9	
Number of Used Subcarriers (N _{used}) (including all possible allocated pilots and the DC sibcarrier)	109	
Number of Subchannels	6	
Number of Tiles	36	

Number of Subcarriers per Tile	3	
Tiles per Subchannel	6	
Number of Data Subcarriers per	48	
Subchannel		

8.4.6.2.5.2 Partitioning of subcarriers into subchannels in the uplink

[Change section "8.4.6.2.5.2 Partitioning of subcarriers into subchannels in the uplink" as follows:]

To allocate the subchannels, N_{used} subcarriers are partitioned into tiles which is 3x3 frequency-time block containing 9 tones(1 pilot tones and 8 data tones). The whole frequency band is partitioned into groups of contiguous tiles. Each subchannel consists of 6 tiles each of which is chosen from different groups. Let us denote the number of tiles in a group by Ns. Ns is different according to FFT size.

[Remove formula 111 and the variable descriptions below it. Replace with the following:]

There are 18 groups in the whole frequency band and the number of tiles in a group is Ns. In order to make a subchannel, 6 groups at equal distance (3 groups away from each) are chosen and each of 6 tiles is selected from each group.

The exact partitioning into subchannels is according to Equation (111a), called UL permutation formula.

$$Tile(s,m) = \begin{cases} 3N_s \cdot m + N_s \cdot S + [s' + P_{1,c_1}(m') + P_{2,c_2}(m')], & 0 < c_1, c_2 < N_s \\ 3N_s \cdot m + N_s \cdot S + [s' + P_{1,c_1}(m')], & c_1 \neq 0, c_2 = 0 \\ 3N_s \cdot m + N_s \cdot S + [s' + P_{2,c_2}(m')], & c_1 = 0, c_2 \neq 0 \\ 3N_s \cdot m + N_s \cdot S + s', & c_1 = 0, c_2 = 0 \end{cases}$$
(111a)

where

Tile(s, m) = tile index of the mth tile in subchannel s.

$$S = \lfloor s / N_s \rfloor, \quad s' = s \cdot \operatorname{mod}(N_s)$$

m = tile-in-subchannel index from the set $[0 \sim 5]$, $m' = m \mod(Ns-1)$

s = index number of a subchannel from the set $[0 \sim 3N_{s}-1]$

 $P_{1,cl}(j) = j^{h}$ element of the sequence obtained by rotating basic permutation sequence P₁ cyclically to the left c₁ times. See Table 310e.

 $P_{2,c2}(j) = j^{th}$ element of the sequence obtained by rotating basic permutation sequence P₂ cyclically to the left c₂ times. See Table 310e.

$$c_1 = ID_{cell} \cdot mod(N_s), \quad c_2 = \lfloor ID_{cell} / N_s \rfloor$$

In Equation (6), the operation in [] is over $GF(2^n)$. In $GF(2^n)$, addition is binary XOR operation. For example, 13 + 4 in $GF(2^n)$ is $[(1101)_2 \text{ XOR } (0100)_2] = (1001)_2 = 9$, where $(x)_2$ represents binary expansion of x.

----- End Text ------

(3) Replace text from page 232, line 26 to page 234, line 9 with the following text:

----- Start Text -----

8.4.6.3 Optional permutations for AAS and AMC subchannels

[Add the following Tables and text to "Section 8.4.6.3 Optional permutations for AAS and AMC subchannels"]

Parameter	Value	Notes
Number of DC Subcarriers	1	
Number of Guard Subcarriers, Left	80	
Number of Guard Subcarriers, Right	79	
Number of Used Subcarriers (N _{used}) (including all possible allocated pilots and the DC sibcarrier)	865	
Number of Pilot Subcarriers	96	
Pilot Subcarrier Index	9k+3m+1 for k=0,195 and m=[symbol index] mod 3	Symbol of index 0 in pilot subcarrier index should be the first symbol of the frame.
Number of Data Subcarriers	768	
Number of Bands	24	
Number of Bins per Band	4	
Number of Data Subcarriers per Subchannel	48	

Table 314a—1024-FFT OFDMA AMC subcarrier allocations

Table 314b—512-FFT OFDMA AMC subcarrier allocations

Parameter	Value	Notes
Number of DC Subcarriers	1	
Number of Guard Subcarriers, Left	40	
Number of Guard Subcarriers, Right	39	
Number of Used Subcarriers (N _{used}) (including all possible allocated pilots and the DC sibcarrier)	433	
Number of Pilot Subcarriers	48	
Pilot Subcarrier Index	9k+3m+1 for k=0,1…47 and m=[symbol index] mod 3	Symbol of index 0 in pilot subcarrier index should be the first symbol of the frame.
Number of Data Subcarriers	384	
Number of Bands	12	
Number of Bins per Band	4	
Number of Data Subcarriers per Subchannel	48	

Table 314c—128-FFT OFDMA AMC subcarrier allocations

Parameter	Value	Notes
Number of DC Subcarriers	1	
Number of Guard Subcarriers, Left	10	
Number of Guard Subcarriers, Right	9	
Number of Used Subcarriers (N _{used})	109	
(including all possible allocated pilots		
and the DC sibcarrier)		
Number of Pilot Subcarriers	12	
Pilot Subcarrier Index	9k+3m+1	Symbol of index 0 in pilot
	for k=0,111 and	subcarrier index should
	m=[symbol index]	be the first symbol of the
	mod 3	frame.
Number of Data Subcarriers	96	

Number of Bands	3	
Number of Bins per Band	4	
Number of Data Subcarriers per Subchannel	48	

There are four types of AMC subchannels which are different in the collection of 6 bins in a band. In the first type(default type), the available bins in a band are enumerated by starting from the lowest bin in the first symbol to the last bin in the symbol and then going to the lowest bin in the next symbol and so on. A subchannel consists of 6 consecutive bins in this enumeration. The second type is 2 bins by 3 symbols, the third type is 3 bins by 2 symbols and the last type is 1 bin by 6 symbols. In the last three types, enumeration of bins in a subchannel is the same as in the first type. In all the types, the index of the subchannels in a band is increased along bins and then symbols.

----- End Text -----