Project	IEEE 802.16 Broadband Wireless Access Working Group < <u>http://ieee802.org/16</u> >	
Title	Framework for Enabling Closed-loop MIMO for OFDMA	
Date Submitted	2004-11-14	
Source(s)	Wonil Roh, JeongTae Oh, Chan-Byoung Chae, Kyunbyoung Ko, Hongsil Jeong, Sung-Ryul Yun, Seungjoo Maeng, Jaeho Jeon, Jaeyeol Kim, Soonyoung Yoon	wonil.roh@samsung.com Voice: +82-31-279-3868
	Samsung Electronics Co., Ltd.	
	Young-Ho Jung, Seung Hoon Nam , Jaehak Chung, Yungsoo Kim, Sung-Jin Kim, Hojin Kim	
	Samsung Advanced Institute of Technology	
	Frik Lindskog Harold Artes Diordie Tuikovic, Kamlesh	elindskog@beceem.com
	Rath, Andreas Bergkvist, V. Shashidhar, B. Sundar Rajan, Rahul Vaze, Bob Lorenz, Babu Mandava, A. Paulraj, Aditya Agrawal	Voice: +1-408-387-5014
	Beceem Communications, Inc.	
	Wen Tong, Peiying Zhu, Ming Jia, Dongsheng Yu, Hua Xu, Jianglei Ma ,Mo-Han Fong, Hang Zhang, Brian Johnson	
	Nortel Networks	
	Qinghua Li, Xintian Eddie Lin, Shilpa Talwar, Randall Schwartz, Sumeet Sandhu, Nageen Himayat	
	Intel Corporation	
	Bin-Chul Ihm, Yongseok Jin, Jinyoung Chun, Kyuhyuk Chung	
	LG Electronics	
	Kevin Baum, Mark Cudak, Tim Thomas, Fred Vook Xiangyang (Jeff) Zhuang	
	Motorola Labs	
	Jianzhong (Charlie) Zhang, Anthony Reid, Kiran Kuchi, Nico Van Waes, Victor Stolpman	

Jing Wang, Sean Cai

ZTE

Muhammad Ikram, Eko Onggosanusi, Vasanthan Raghavan, Anand Dabak, Srinath Hosur, and Badri Varadarajan

Texas Instruments

Nokia

Mattias Wennstrom, Branislav Popovic

Huawei Technologies

Young Seog Song, Seung Joon Lee, Dong Seung Kwon

ETRI Korea

Re:	
Abstract	Framework for Enabling Closed-loop MIMO for OFDMA
Purpose	Adoption of proposed changes into P802.16e
	Crossed-out indicates deleted text, underlined blue indicates new text change to the Standard
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) < <u>http://ieee802.org/16/ipr/patents/policy.html</u> >, including the statement "IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard."
	Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair < <u>mailto:r.b.marks@ieee.org</u> > as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site < <u>http://ieee802.org/16/ipr/patents/notices</u> >.

Framework for Enabling Closed-loop MIMO for OFDMA

1. Introduction

In this contribution, a framework which enables closed-loop MIMO (CL-MIMO) for OFDMA systems is provided. It includes redefinition of CQICH feedback mechanism, the required changes of payload, and clarification of precoding operation and the necessary text changes on the relevant sections in the standard.

2. MIMO Related Basic Capabilities

When SS reports its capabilities through the SBC_REQ message, it should be allowed to report all its MIMO capabilities, including closed-loop ones if any.

[Note to the Editor:

Please note that the following TLV subsections are missing in the current draft standard. They were accepted by WG at Sep. meeting in Seoul (C802.16e-04/362r3) and reproduced here to help the Editor to reflect the necessary changes on the standard. The changes suggested at this document are indicated in the conventional way]

[Insert the following sections as indicated]

11.8.3.7.6 OFDMA SS Demodulator for MIMO Support

This field indicates the MIMO capability of OFDMA SS demodulator. A bit value of 0 indicates "not supported" while 1 indicates "supported".

<u>Type</u>	<u>Length</u>	Value	<u>Scope</u>
<u>155</u>	<u>1</u>	Bit #0 Two receive antennas	SBC-REQ (See 6.3.2.3.23)
		Bit #1 Three receive antennas	<u>SBC-RSP (See 6.3.2.3.24)</u>
		Bit #2 Four receive antennas	
		Bit #3 Capable of transmit diversity	
		Bit #4 Capable of spatial multiplexing	
		Bit #5-#7 Always set to zero	

11.8.3.7.7 OFDMA SS Closed-Loop Feedback Demodulator for MIMO Support

This field indicates the closed-loop MIMO capability of OFDMA SS demodulator. A bit value of 0 indicates "not supported" while 1 indicates "supported".

<u>Type</u>	<u>Length</u>	Value	<u>Scope</u>
-------------	---------------	-------	--------------

<u>156</u>	1	Bit #0 Capable of calculating precoding weight	<u>SBC-REQ (See 6.3.2.3.23)</u>
		Bit #1 Capable of adaptive rate control	<u>SBC-RSP (See 6.3.2.3.24)</u>
		Bit #2 Capable of calculating channel matrix	
		Bit #3 Capable of antenna grouping	
		Bit #4 Capable of antenna selection	
		Bit #5 Capable of code book based precoding	
		Bit #6-7 Reserved.	

11.8.3.7.8 OFDMA SS Modulator for MIMO Support

This field indicates the MIMO capability of OFDMA SS modulator. A bit value of 0 indicates "not supported" while 1 indicates "supported".

<u>Type</u>	<u>Length</u>	Value	<u>Scope</u>
<u>1557</u>	1	Bit #0 Two transmit antennas Bit #1 Capable of transmit diversity Bit #2 Capable of spatial multiplexing Bit #3 Capable of beamforming Bit #4 Capable of adaptive rate control Bit #5-#7 Always set to zero	<u>SBC-REQ (See 6.3.2.3.23)</u> <u>SBC-RSP (See 6.3.2.3.24)</u>

[End of 'Insert the following sections as indicated']

3. CQICH Signaling for CL-MIMO

[Note to the Editor:

Please note that the following subsections are missing in the current draft standard. They were accepted by WG at Sep. meeting in Seoul (C802.16e-04/362r3) and reproduced here to help the Editor to reflect the necessary changes on the standard. The additional changes suggested at this document are indicated in the conventional way]

[Modify Section 8.4.5.4.10.4 as indicated in the following]

8.4.5.4.10.4 Optional Enhanced FAST FEEDBACK Channels

Enhanced Fast feedback slots may be individually allocated to an MSS for transmission of PHY related information that requires fast response from the MSS. The allocations are done either in a unicast manner through the FAST_FEEDBACK MAC subheader (see 6.3.2.2.6), or through the CQICH_Control IE() (see 6.3.2.3.43.5), or through the CQICH_Alloc_IE() (see 8.4.5.4.12), or through the CQICH_Enhanced_Alloc_IE() (see 8.4.5.4.12.1), or through the MIMO Compact DL-MAP IE() (see 6.3.2.3.43.6.7), and the transmission takes place in a specific UL region designated by UIUC = 0.

[Modify Section 8.4.5.4.10.6 as suggested in the following]

8.4.5.4.10.6 Fast MIMO Feedback of Quantized Precoding Weight for Enhanced FAST_FEEDBACK Channel

When the FAST_FEEDBACK subheader Feedback Type field is '01' or '10', or the CQI Feedback Type field in the MIMO Compact DL-MAP IE() (see 6.3.2.3.43.6.7) is 001, or the CQI Feedback_Type field in CQICH_Enhanced_Alloc_IE() (see 8.4.5.4.1512.1) is 001, the MSS shall report the MIMO coefficient the BS should use for best DL reception (see 8.4.8.1.6). The mapping for the complex weights is shown in Figure 231c, and the SS shall construct the 6 CQI bits with 0 as the MSB and the mapped code as the remaining LSBs. For this type of feedback, if *N* is the number of BS transmit antennas, then (*N-1*) CQICH shall be allocated to the SS and SS shall report the desired antenna weights of antenna 1 through *N-1* based on antenna 0.

Figure 231c - Mapping of MIMO coefficients for quantized precoding weight for enhanced fast MIMO feedback payload bits

[Replace Section 8.4.5.4.10.7 with the following]

8.4.5.4.10.7 MIMO Mode Feedback for Enhanced FAST_FEEDBACK channel

2004-11-18

When the enhanced FAST FEEDBACK channel is employed, the SS may report the MIMO mode feedback on the assigned CQICH when the FAST_FEEDBACK subheader Feedback Type field is '00', or the CQI Feedback Type field in the MIMO Compact DL-MAP IE() (see 6.3.2.3.43.6.7) is 000, 001, or 010, or the CQI Feedback Type field in CQICH_Enhanced_Alloc_IE() (see 8.4.5.4.15) is 000, 001, or 010. The encoding of payload bits is shown in Table 296d.

Table 296d —Encoding of payload bits for MIMO Mode Feedback with Enhanced FAST FEEDBACK Channel

Value	Description
<u>0b101000</u>	STTD and PUSC/FUSC permutation
<u>0b101001</u>	STTD and adjacent-subcarrier permutation
<u>0b101010</u>	SM and PUSC/FUSC permutation
<u>0b101011</u>	SM and adjacent-subcarrier permutation
<u>0b101100</u>	Hybrid and PUSC/FUSC permutation
<u>0b101101</u>	Hybrid and adjacent-subcarrier permutation
<u>0b101110-</u> <u>0b110110</u>	Interpretation according to table X, Y or Z depending on if antenna grouping, antenna selection or a reduced precoding matrix code book is used.
<u>0b110111</u>	Closed loop precoding with 1 stream.
<u>0b111000</u>	Closed loop precoding with 2 streams.
<u>0b111001</u>	Closed loop precoding with 3 streams.
<u>0b111010</u>	Closed loop precoding with 4 streams.
<u>0b111011 -</u> <u>0b111111</u>	Reserved

Clarification of streams concept:

The number of streams is the number of outputs from the space-time code.

Table X — Interpretation of code words 0b101110-0b110110 in Table 296d in the case of using antenna grouping

Value	Description
<u>0b101110</u>	Antenna Group A1 for rate 1 For 3-antenna BS, See 8.4.8.3.4
	For 4-antenna BS, See 8.4.8.3.5
<u>0b101111</u>	Antenna Group A2 for rate 1
<u>0b110000</u>	Antenna Group A3 for rate 1
<u>0b110001</u>	Antenna Group B1 for rate 2
	For 4-antenna BS, See 8.4.8.3.5
<u>0b110010</u>	Antenna Group B2 for rate 2
<u>0b110011</u>	Antenna Group B3 for rate 2
<u>0b110100</u>	Antenna Group B4 for rate 2 (only for 4-antenna BS)
<u>0b110101</u>	Antenna Group B5 for rate 2 (only for 4-antenna BS)

|--|

Table Y — Interpretation of code words 0b101110-0b110110 in Table 296d in the case of using antenna selection

Value	Description
<u>0b101110</u>	Antenna selection option 0
<u>0b101111</u>	Antenna selection option 1
<u>0b110000</u>	Antenna selection option 2
<u>0b110001</u>	Antenna selection option 3
<u>0b110010</u>	Antenna selection option 4
<u>0b110011</u>	Antenna selection option 5
<u>0b110100</u>	Antenna selection option 6
<u>0b110101</u>	Antenna selection option 7
<u>0b110110</u>	Reserved

Table Z —Interpretation of code words 0b101110-0b110110 in Table 296d in the case of using reduced precoding matrix code book

Value	Description
<u>0b101110</u>	Reduced Precoding matrix code book entry 0
<u>0b101111</u>	Reduced Precoding matrix code book entry 1
<u>0b110000</u>	Reduced Precoding matrix code book entry 2
<u>0b110001</u>	Reduced Precoding matrix code book entry 3
<u>0b110010</u>	Reduced Precoding matrix code book entry 4
<u>0b110011</u>	Reduced Precoding matrix code book entry 5
<u>0b110100</u>	Reduced Precoding matrix code book entry 6
<u>0b110101</u>	Reduced Precoding matrix code book entry 7
<u>0b110110</u>	Reserved

[End of "Replace Section 8.4.5.4.10.7 with the following"]

[Remove the entire Section 8.4.5.4.10.8]

8.4.5.4.10.8 MIMO related Type Independent Feedback for enhanced FAST_FEEDBACK channel

For 6 bit payload case, MIMO related feedback shall be encoded as is shown in Table 294d .

Table 297 Encoding of payload bits for MIMO feedback with 6 bit payload

Value	Description
0b101000	STC and PUSC/FUSC permutation

0b101001	STC and adjacent subcarrier permutation
0b101010	SM and PUSC/FUSC permutation
0b101011	SM and adjacent subcarrier permutation
0b101100	Closed loop SM and PUSC/FUSC permutation-
0b101101	Closed loop SM and adjacent subcarrier permutation
0b101110	Hybrid and PUSC/FUSC permutation
0b101111	Hybrid and adjacent subcarrier permutation
0b110000	Beamforming and adjacent subcarrier permutation
0b110001	Antenna Group A For 3 antenna BS, $00 =$ Antenna group $0,1 \& 0,2$ For 4 antenna BS, $00 =$ Antenna group $0,1 \& 2,3$
0b110010	Antenna Group BFor 3 antenna BS, 00 = Antenna group 0,1 & 1,2 For 4 antenna BS, 00 = Antenna group 0,2 & 1,3
0b110011	Antenna Group CFor 3 antenna BS, 00 = Antenna group 0,2 & 1,2 For 4 antenna BS, 00 = Antenna group 0,3 & 1,2
0b110100	Reserved
0b111111	

[Modify the following section as indicated]

8.4.5.4.15 CQICH Enhanced Allocation IE Format

<u>CQICH_Enhanced_Alloc_IE()</u>, is introduced to dynamically allocate or de-allocate a CQICH to a SS. This IE shall only be used with enhanced FAST FEEDBACK channel in 8.4.5.4.10.4. Once allocated, the SS transmit feedback information of the specified type on the assigned CQICH with the determined period, until the SS receives a CQICH_Enhanced_Alloc_IE() to de-allocate the assigned CQICH.

Syntax	Size (bits)	Notes
CQICH_Enhanced_Alloc_IE() {		
Extended UPIUC	4	0x09
Length	4	Length in bytes of following fields
CQICH_ID	variable	Index to uniquely identify the CQICH resource assigned to the MSS
Period (=p)	2 4	A CQI feedback is transmitted on the CQICH every 2 ^p frames
Frame offset	3	The MSS starts reporting at the frame of which the number has the same 3 LSB as the specified frame offset. If the current frame is specified, the MSS should start reporting in 8 frames
Duration (=d)	3	A CQI feedback is transmitted on the CQI channels indexed by the CQICH_ID for 10 x 2 ^d frames. If d==0, the CQICH is de- allocated. If d == 111, the MSS should report until the BS command for the MSS to stop.
NT actual BS antennas	3	$\begin{array}{l} 001 = \text{Reserved} \\ 010 = 2 \text{ actual antennas} \\ 011 = 3 \text{ actual antennas} \\ 100 = 4 \text{ actual antennas} \\ 101 = 5 \text{ actual antennas} \end{array}$

Table 298a. CQICH Enhanced allocation IE format

		$\frac{110}{10} = 6$ actual antennas
		111 - 7 actual antennas
		000 - 9 octual antennas
Foodback type	3	000 - East DL massurement/Default Foodback
Peeuback_type	3	001 Dress ding suciely before recuber
		001 = Precoding weight matrix information
		010 = Channel matrix H
		$011 = MIMO \mod and permutation zone$
		100 = Open loop precoding
		$\frac{101 - 111 = \text{Reserved}}{101 - 111 = \text{Reserved}}$
CQICH_Num	4	Number of CQICHs assigned to this CQICH_ID is (CQICH_Num
		+1)
for (i=0:i <coich num+1:i++)<="" td=""><td></td><td></td></coich>		
{		
Feedback type	3	000 = East DL measurement/Default Feedback with antenna
<u>reduction (jpc</u>	2	grouping
		001 - Fast DI massurament/Default Feedback with antenna
		<u>ool – Past DL measurement/Default reedback with antenna</u>
		<u>selection</u> 010 East DL measurement/Default Easthach with reduced as de
		010 = Past DL measurement/Default Feedback with reduced code
		book
		<u>011 = Quantized precoding weight feedback</u>
		100 = Index to precoding matrix in code book
		<u>101 = Channel Matrix Information</u>
		101 = Per stream power control
		110 = Adaptive bit loading
		111 = Reserved
Allocation index	6	Index to the fast feedback channel region marked by UIUC=0
}		
,		This field exists only for 4 bit and 5 bit COI peuloed
if ((Feedback_type != 011) & (!	2	00 - No MIMO and permutation mode feedback
6-bit CQICH)) {		
MIMO_permutation_feedback		01 = the MIMO and permutation mode indication shall be
cycle }		transmitted on the CQICH indexed by the CQICH_ID every 4
•		frames. The first indication is sent on the 8th CQICH frame.
		10 to MBAO and a set as an effective state of the state o
		10 = the MHMU mode and permutation mode indication shall be
		transmitted on the CQICH indexed by the CQICH_ID every 8
		trames. The first indication is sent on the 8th CQICH frame.
		H = the MIMO mode and permutation mode indication shall be
		transmitted on the CQICH indexed by the CQICH_ID every 16
		frames. The first indication is sent on the 16 th CQICH frame.
Padding	variable	The padding bits are used to ensure the IE size is integer number
-		of bytes.
}		
3	1	

Feedback Type

For feedback types 000-010 it instructs the SS to transmit the feedback of the specified type using the 5 LSBs on its assigned CQICH as in Table 296d. In this case the MSB is set to 0. In addition, for feedback types 000-010, the SS may transmit, on its assigned CQICH, the feedback information specified in 8.4.5.4.10.7. For 4 bit or 5 bit CQI payload, the type dependent feedback in 16 or 32 levels shall be feedback, respectively. For 6 bit CQI payload, however, the MSB of 6 bit payload from a SS is the indicator of the usage for the remaining 5 bits. When the MSB is set to '0' with 6 bit payload, the following 5 bit payload shall be used for the type dependent feedback in Table 294d.

[Add section 6.3.2.3.59]

6.3.2.3.59 MIMO precoding setup/tear-down

The BS can setup longterm precoding with feedback from a particular SS by sending the MAC-manage message PRC-LT-CTRL to the SS. The BS can also use the same MAC-management message to tear-down the longterm precoding with feedback.

The precoding feedback delay of the base station, in number of frames, should be signaled from the BS to the SS in the PRC-LT-CTRL MAC-management message.

Table 108a – Setup/Tear-down of long term MIMO precoding (PRC-LT-CTRL) message format

<u>Syntax</u>	Size	<u>Notes</u>
PRC-LT-CTRLformat(){		
Management message type = 64	<u>8 bits</u>	
Setup/Tear-down long term precoding with feedback	<u>1 bit</u>	<u>1=Turn on</u>
BS precoding application delay	<u>2 bits</u>	<u>v=1urn off</u> <u>k</u> , delay in number of frames beyond the <u>minimal delay of 1 frame for when</u> <u>precoding information fed back from the</u> <u>SS</u> to the BS one or will be emplied
1		55 to the BS can or will be applied.

BS shall generate the PRC-LT-CTRL message including the following parameters:

Setup/Tear-down long term precoding with feedback

Bit indicating setup or tear-down of long term precoding with feedback. Bit equal to 1 turns on the long term precoding. Bit equal 0 turns off the long term precoding with feedback.

[End of adding text]

[Modify Section 6.3.2.3 MAC Management messages]

[Add row to Table 14a, MAC Management messages according to the Table below:]

[Row to be added to Table 7b. Feedback Type and feedback content.]

Туре	Message description	Connection
<u>64</u>	Setup/Tear-down of long term MIMO precoding	Basic

[End of Modification to Section 6.3.2.3 MAC Management messages]

[Insert the following table at the end of section 6.3.2.1.4.1]

Feedback Type	Feedback contents	Description
<u>0b0000</u>	Set as described in table 296d.	MIMO mode and permutation. Feedback
<u>0b0001</u>	DL average CQI (5bits)	5 bits CQI feedback
<u>060010</u>	Number of index, $L (2 \text{ bits}) + L$ occurrences of Antenna index (2 bits) + MIMO coefficients (5 bits, 8.4.5.4.10.6)	MIMO coefficients feedback
<u>0b0011</u>	Preferred-DIUC (4 bits)	Preferred DL channel DIUC feedback
<u>0b0100</u>	UL-TX-Power (7 bits) (see table 7a)	UL transmission power
<u>0b0101</u>	Preferred DIUC(4 bits) + UL-TX-Power(7 bits) + UL-headroom (6 bits) (see Table 7a)	PHY channel feedback
<u>0b0110</u>	<u>Number of bands, N (2 bits) + N</u> <u>occurrences of 'band index (6 bits) + CQI</u> (5 bits)'	CQIs of multiple AMC bands
<u>0b0111</u>	Number of feedback types, O (2 bits) + O occurrences of 'feedback type (4bits) + feedback content (variable)'	Multiple types of feedback
0601000	Feedback of index to long term precoding matrix in code book (6 bits), rank of precoding code book (2 bits) and FEC and QAM feedback (6 bits) according to Table Z.	Long term precoding feedback
<u>0b01001</u>	Life span of short term precoding feedback (2 bits) according to Table Z.	The recommended number of frames the short term precoding feedback can be used for.
<u>0b1001-0b1111</u>	Reserved for future use	

Table 7b. Feedback Type and feedback content.

[End of "Insert the following table at the end of section 6.3.2.1.4.1"]

4. MIMO Precoding

[Modify the following section as indicated]

8.4.8.3.6 MIMO Precoding

The space time coding output can be weighted by a matrix before mapping onto transmit antennas:

z = Wx,

where x is a $M_t \times 1$ vector with the output from the space-time coding (per-subcarrier), M_t is the number of antennasstreams at the output of the space-time coding scheme. The matrix W is an $N_t \times M_t$ weighting matrix where the quantity N_t is the number of actual transmit antennas. The vector z contains the signals after weighting for the different actual antennas. The labeling of the elements in the weighting matrix W is performed in accordance with the example of W given below for the case of 4 actual antennas and 2 space-time coding output antennasstreams:

$$W = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \\ w_{41} & w_{42} \end{bmatrix}$$

Short term closed loop precoding:

When Mt=1, then single stream precoding or beamforming shall be applied with the vector W of dimension $N_t \times 1$. The transmission scheme before the precoder is the regular single antenna transmission. When Mt=2, 3 or 4, then the two, three or four STC output streams shall be transmitted with the 2, 3 or 4 Tx pure spatial multiplexing transmission scheme with a precoding matrix of dimension $N_t \times 2$, $N_t \times 3$ or $N_t \times 4$.

Long term closed loop precoding

The rank of the precoding matrix is indicated in the long term precoding feedback from the SS. The number of columns in the precoding matrix equals its rank. The STC scheme used, Matrix A, B or C, is selected from the set of STC schemes associated with the number of transmit antennas equaling the rank of the long term precoding matrix used. For example, if the rank of the long term precoding matrix is 2 and the spatial rate used is 1 then the Matrix A scheme for 2 Tx antennas is used.

When the long term closed loop precoding is turned on, the life span of short term precoding information, the rank of the long term precoding code book used and the index to the precoding matrix in the specified long term precoding code book is fed back with MAC-header feedback messages 0b0000 and 0b0001. If a short term precoding matrix is available, the BS shall use this short term matrix. If not, the BS shall use the fed back long term precoding matrix, if available.

Table Z – Feedback for long term precoding in MAC feedback header message

MAC-header feedback type bit indication	Feedback element	Number of bits	Description
<u>0b01000</u>	Feedback of index to long term precoding matrix in code book	<u>6</u>	Index to long term precoding matrix element in code book
<u>0b01000</u>	Rank of precoding code book	2	$\frac{k, Rank of precoding}{code book = k+1}$
<u>0b01000</u>	FEC and QAM feedback	<u>6</u>	FEC and QAM specification

Precoding of pilots

Pilot subcarriers within an allocated burst may or may not be precoded/beamformed, as indicated in either the TD_ZONE IE or the HARQ-IE Compact DL-MAP for AMC Zone configuration IE. However, for the adjacent subcarrier permutation zone, when the midamble is not present in the frame, pilot subcarriers within the allocated burst shall not be precoded. For the case of un-precoded pilots, the information on W shall be transmitted to SS through the DL MAP burst allocation IE if so specified in the MIMO Compact DL-MAP IE format.

Precoding state feedforward and precoding application delay

If the precoding state is not fed forward in the DL-MAP IE for a burst, then the BS shall apply precoding according to the precoding feedback from the SS (antenna grouping, antenna selection or code book based) with a predetermined number of frames delay.

[End of modification of the following section as indicated]

5. MIMO Precoding Operation for H-ARQ MAP

Some clarification is made on burst mapping for H-ARQ when multiple MIMO layers are transmitted on the same physical resource. The multiple layer transmission is enabled when spatial multiplexing (SM) schemes are employed with multiple modulation and coding blocks implemented for each spatial layer. We call it horizontal encoding (HE) and this mode enables adaptive rate control for each spatial layer. The other class of spatial multiplexing schemes is called vertical encoding (VE) and it features a common modulation and coding block. Transmit diversity (TD) can be also regarded as single layer technique. Figure 1 shows an example of 2x2 VE MIMO system, whereas Figure 2 illustrates that of 2x2 HE MIMO system. In both figures, L equals the number of layers, Mt the number of STC output streams, Nt the number of BS transmit antennas, and W denotes the precoding matrix. Their relations according to the current standard are tabularized in Table 1.

Figure 1 H-ARQ Enabled Vertically Encoded 2x2 MIMO System

Figure 2 H-ARQ Enabled Horizontally Encoded 2x2 MIMO System (Tx shown only)

Layer = 1 (TD or VE only)		L = 2 (HE only)			L = 3 (HE only)		L = 4 (HE only)		
Mt=1	2	3	4	Mt=2	3	4	Mt=3	4	Mt=4
	A (TD)	A (TD) ¹	A (TD) ¹						
AAS		B (VE) ¹	B (VE) ¹		B (HE) ¹	B (HE) ¹			
	C (VE)	C (VE)	C (VE)	C (HE)			C (HE)		C (HE)

Table 1 Clarification on Layer, Mt and Matrix

In both Figure 1 and Figure 2, when there is no precoding matrix at Tx, Mt becomes the number of transmit antennas. In Table 1, the existing open-loop matrices (A, B, or C) are noted and the superscript ¹ indicates the applicability of the antenna grouping technique.

[Replace the following table in Section 6.3.2.3.43.6.7 as follows]

6.3.2.3.43.6.7 MIMO Compact DL MAP IE format

Table 99a—MIMO Compact DL-MAP IE format

<u>Syntax</u>	<u>Size</u> (bits)	Notes
MIMO Compact DL-MAP IE() {		
Compact DL-MAP Type	<u>3</u>	$\underline{\text{Type}} = 7$
_DL-MAP Sub-type	<u>5</u>	$\underline{\text{MIMO}} = 0 \times 01$
Length	<u>4</u>	Length of the IE in Bytes
<u>MIMO_Type</u>	2	$\frac{\text{Type of MIMO Mode}}{\text{00 = Open-loop}}$ $\frac{01 = \text{Antenna Grouping}}{10 = \text{Antenna Selection}}$ $\frac{11 = \text{Closed-loop code book based precoding}}{11 = \text{Closed-loop code book based precoding}}$
<u>Num layer</u>	2	$\frac{\text{Number of multiple coding/modulation layers}}{00 - 1 \text{ layer}}$ $\frac{01 - 2 \text{ layers}}{10 - 3 \text{ layers}}$ $\frac{11 - 4 \text{ layers}}{11 - 4 \text{ layers}}$

Mode_Change	1	<u>Indicates Change of MIMO Mode</u> <u>0 = No change from previous allocation</u> 1 = Change of MIMO Mode
_If (Mode_Change) {		
<u>Matrix Indicator</u>	2	Indicates open-loop matrix (See 8.4.8.3) 00 = Matrix A (Transmit Diversity) 01 = Matrix B (Hybrid scheme. Applicable only for 3 and 4 antennas) 10 = Matrix C (Pure Spatial Multiplexing) 11 = Reserved
<u>Feedforward_precoding_state</u>	1	 0 – Don't feed forward the precoding state. The precoding feedback from SS is applied by the BS after the precoding application delay. 1 – Feed forward the precoding state. The BS can apply arbitarty precoding.
If Feedfoward precoding state{		
<u>Mt</u>	2	Indicates number of STC output streams 00 = 1 stream 01 = 2 streams 10 = 3 streams 11 = 4 streams
if (MIMO_Type == 01) {		
Antenna Grouping Index }	<u>4</u>	Indicates the index of antenna grouping See 8.4.8.3.4 and 8.4.8.3.5
if (MIMO_Type == 10) {		
Antenna Selection Index }	<u>4</u>	Indicates the index of antenna selection See 8.4.8.3.4 and 8.4.8.3.5
if (MIMO_Type == 11) {		
Code book precoding matrix	<u>12</u>	Indicates the index of precoding matrix in code
<u>for (j=1;j<num_layer+1; j++)="" u="" {<=""></num_layer+1;></u>		This loop specifies the Nep for layers 2 and above when required for STC. The same Nsch and RCID applied for each layer
if (H-ARQ Mode =CTC Incremental <u>Redundancy) {</u> <u>Nep }</u> <u>elseif (H-ARQ Mode = Generic Chase) {</u> <u>DIUC</u> <u>}</u>	4	H-ARQ Mode is specified in the H-ARQ Compact DL-MAP IE format for Switch H- ARQ Mode.
if (CQICH indicator == 1) {		CQICH indicator comes from the preceding Compact DL-MAP IE
Allocation Index }	<u>6</u>	Index to CQICH assigned to this layer. For the multi-layer MIMO transmission, the feedback type for this CQICH and that of the preceding Compact DL-MAP IE shall be 000.
	4	The number of additional COICUs allocated to
	<u>+</u>	this SS. (0 – 15 CQICHs)
<u>If (CQICH_Num != 0) {</u>		

Feedback_type	<u>3</u>	Type of contents on CQICH for this SS
		<u>000 = Fast DL measurement/Default Feedback</u>
		with antenna grouping
		<u>001 = Fast DL measurement/Default Feedback</u>
		with antenna selection
		<u>010 = Fast DL measurement/Default Feedback</u>
		with reduced code book
		<u>011 = Quantized precoding weight feedback</u>
		100 = Index to precoding matrix in code book
		<u>101 = Channel Matrix Information</u>
		<u>101 = Per stream power control</u>
		110 = Adaptive bit loading
		$\underline{111} = \text{Reserved}$
Period (p)	<u>4</u>	Period of the additional (CQICH Num) CQI
		channels in frame
<u>for (i=0;i<cqich_num;i++) u="" {<=""></cqich_num;i++)></u>		
Allocation index	<u>6</u>	Index to uniquely identify the additional
		CQICH resources assigned to the SS
Padding	variable	The padding bits are used to ensure the IE size
		is integer number of bytes
1		

[Modify the following text in line 1 through line 30 in page 43 as follows]

<u>Mt</u>

This field indicates the number of streams at the STC output if STC is deployed. The single stream precoding or AAS shall be enabled with Mt=00, Num_layer=00 and MIMO_Type=11.

Precoding Index

This field indicates the index of precoding matrix which is being used in the current burst.

Matrix Indicator

```
This field indicates MIMO matrix for the burst.
For 2-antenna BS, 00 = Matrix A; 01 = Matrix B; 10-11 = Reserved.
For 3 antenna BS, 00 = Matrix A; 01 = Matrix B; 10 = Matrix C; 11 = Reserved.
For 4 antenna BS, 00 = Matrix A; 01 = Matrix B; 10 = Matrix C; 11 = Reserved.
if (Num layer=1) {
  if (Mt = 1) {
    SISO or AAS mode}
  elseif (Mt = 2) {
    00 = A (TD); 01 = C (VE); 10 - 11 = Reserved
  elseif (Mt = 3) {
    00 = A (TD); 01 = B (VE); 10 = C (VE); 11 = Reserved
  elseif (Mt = 4) {
    00 = A (TD); 01 = B (VE); 10 = C (VE); 11 = Reserved
ł
elseif (Num_layer = 2) {
  <u>if (Mt = 2) {</u>
    00 = C (HE); 01 - 11 = Reserved
  elseif (Mt = 3) {
    00 = B (HE); 01 - 11 = Reserved
  elseif (Mt = 4) {
    00 = B (HE); 01 - 11 = Reserved
```

} elseif (Num layer = 3) { if (Mt = 3) { 00 = C (HE); 01 - 11 = Reserved} elseif (Num_layer = 4) { if (Mt = 4) { 00 = C (HE); 01 - 11 = ReservedTD means transmit diversity; VE means vertical encoding (see 8.4.8.3) HE means horizontal encoding (see 8.4.8.3) **Antenna Grouping Index** This field indicates antenna grouping index for the current burst. For the actual description of the following matrices, see 8.4.8.3.4 and 8.4.8.3.5. if (Num_layer=1) { if (Mt = 3) { 0000 = A1; 0001 = A2; 0010 = A3;0011 = B1 (VE); 0100 = B2 (VE); 0101 = B3 (VE); 0110-1111 = Reservedelseif (Mt = 4) { 0000 = A1; 0001 = A2; 0010 = A3;<u>0011 = B1 (VE); 0100 = B2 (VE); 0101 = B3 (VE); 0110 = B4 (VE); 0111 = B5 (VE); 1000 = B6 (VE);</u> 1001-1111 = Reserved} elseif (Num layer = 2) { if (Mt = 3) { 0000 = B1 (HE); 0001 = B2 (HE); 0010 = B3 (HE); 0011-1111 = Reservedelseif (Mt = 4) { 0000 = B1 (HE); 0001 = B2 (HE); 0010 = B3 (HE); 0011 = B4 (HE); 0100 = B5 (HE); 0101 = B6 (HE); $0110-1111 = \text{Reserved}\}$

Antenna Selection Index

This field indicates antenna selection index for the current burst. For the actual description of the following matrices, see 8.4.8.3.4 and 8.4.8.3.5.

CQI Feedback Type

For feedback types 000-010 it instructs the SS to transmit the feedback of the specified type using the 5 LSBs on its assigned CQICH as in Table 296d. In this case the MSB is set to 0. In addition, for feedback types 000-010, the SS may transmit, on its assigned CQICH, the feedback information specified in 8.4.5.4.10.7. For 4 bit or 5 bit CQI payload, the type dependent feedback in 16 or 32 levels shall be feedback, respectively. For 6 bit CQI payload, however, the MSB of 6 bit payload from a SS is the indicator of the usage for the remaining 5 bits. When the MSB is set to '0' with 6-bit payload, the following 5-bit payload shall be used for the type dependent feedback in Table 294d.

Period (p)

For the additional CQICH whose number is specified by CQICH_Num, the feedback whose type is specified by CQI_Feedback_type is transmitted on each CQICH in every 2^{p} frames. The same Frame offset and Duration (d) as specified in the preceding Compact DL-MAP IE shall be applied to the additional (CQICH_Num) CQI channels.

Allocation Index

It indicates its position from the start of the CQICH region.

For each layer, a codeword shall be constructed according to 8.4.9.2.3.5 with the Nep and Nsch combination and mapped onto the corresponding layer. Multiple codewords from multiple layers shall be interpreted as one H-ARQ channel whose parameters are given in the preceding Compact DL-MAP IE.

2004-11-18

At the receiver, an ACK shall be transmitted only when there is no CRC error detected on every layer. Otherwise, a NACK shall be transmitted.

References:

,

[1] IEEE P802.16-REVd/D5-2004 Draft IEEE Standards for local and metropolitan area networks part 16: Air interface for fixed broadband wireless access systems

[2] IEEE P802.16e/D5 Air Interface for Fixed and Mobile Broadband Wireless Access Systems – Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands