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High Girth LDPC Coding for OFDMA PHY 
Robert Xu, David Yuan, Li Zeng 

ZTE Corporation  
Overview 
Many excellent code designs have been submitted. The codes have been qualitatively and 
quantitatively characterized, and it is clear that a LDPC code with excellent flexibility and 
performance, as well as low encoding and decoding complexity, can be defined for 802.16e.  
 
An informal LDPC group has been working on the goal of achieving consensus on a 
proposed LDPC code design as an optional advanced code for the OFDMA PHY. We would 
like to support their work, so we apply our technologies to improve the LDPC codes 
proposed in the contribution “IEEE C802.16e-04/373r1” produced by the group. 
 
Based on the contribution “IEEE C802.16e-04/373r1”, which contains a harmonized LDPC 
code definition agreed by 6 of the 8 companies that provided LDPC proposals to an informal 
LDPC group, we design high girth LDPC codes. The base matrix‘s dimension and the degree 
distribution of these LDPC codes is the same as those in “IEEE C802.16e-04/373r1”. That is, 
the part of check matrix corresponding to systematic bits has a regular structure, row weight 
and column weight of the part are all 4, and the part of check matrix corresponding to parity 
bits has a dual-diagonal structure. 
 
As we all know, code rate, codeword length and degree distribution decide the performance 
of LDPC codes. When Message Passing algorithm is used, the short cycles in the bipartite of 
LDPC codes will obviously degrade the performance of the LDPC codes, especially when 
SNR is high. Girth was defined as the length of the shortest cycle of the bipartite of LDPC 
codes, and it has become a criterion on the performance of LDPC codes.  During the 
decoding iteration process, the extrinsic information from one variable node always returns to 
itself.  Some variable nodes are dependent on each other. The higher the girth of one LDPC 
code is, the more iteration times that the extrinsic information from one variable node return 
to itself needs, and the less extrinsic information from one variable node returns to itself, so 
more independent the variable nodes will be. Thus it is very important to construct high girth 
LDPC codes to satisfy the requirement of Message passing algorithm.  
 
High girth LDPC codes try to overcome the “error floor” phenomenon, and the BER curve 
of them will descend more steeply. However, normal LDPC codes have the “error floor” 
phenomenon, BER curve descends more and more slow. It is always difficult to arrive at the 
point BER = 10e-6, which efficient data communication needs. So high girth LDPC codes are 
suitable for the situation where low BER is needed. 
 
By changing base matrix for each specific code rate to design high girth LDPC codes, 
performance improvement is obtained. Our method not only can be used to design regular 
LDPC codes, but also can be used to design irregular LDPC codes. In addition, any matrix 
structure with given code rate, codeword length and degree distribution can be constructed by 
our method, not only those given in [1], which largely increases the feasibilities of our 
method. It has become the solution of systematic shortcomings of normal LDPC codes design.  
 
A single base matrix H0 is designed for the longest code (N0 = 2304) of each code rate (1/2, 
2/3 and 3/4), and the base matrices for shorter codes (N = 576 to 2208) are derived from H0.  
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For a shorter code size N corresponding to expansion factor zN, the cyclic shift value s in the 
base matrix H0 is also proportionally adjusted according to 
(For our contribution) 

s = s0 mod zN  
(For Motorola’s contribution) 

s = Floor(s0*N/N0) 
where s0 is cyclic shift entry in H0 and mod is the module operation. Our calculation is more 
efficient. 
 
References 
The following documents contain background material and source material from which the 
group is working. Modifications to this material are being considered as well as new material 
from Motorola etc, in order to achieve harmonization on the best possible code for 802.16e. 
1 C80216e-04_373r1 LDPC coding for OFDMA PHY,  Brian Classon etc. 
2 C80216e-04_141r2 LDPC coding for OFDMA PHY, Eric Jacobsen etc., Intel Corporation 
3 C80216e-04_374 LDPC for the OFDMA PHY, Brian Classon etc., Motorola Corporation 
4 ACHIEVING HIGH DATA RATE USING LDPC, Yufei W. Blankenship (Motorola Co.), 
Bo Xia (Intel Co.), Informal document(not final version) 
 
Features 

- Simple encoding and decoding 
- Less average iteration numbers 
- Good performance 
- Eliminate error floor 

 
Simulation Results  

 
Simulation results for ZTE high girth codes of the rate 1/2,2/3,3/4 code families are 

shown in Figure 1-3. For these three rates, code sizes considered are all 576-2304. The 
simulation conditions are: AWGN channel, BPSK modulation, max iterations times 50, using 
generic floating-point belief propagation. Our high girth code has the same degree 
distribution (column weight, row weight) as the 373r1 code in [1], base matrices of our code 
have the same dimension to 373r1 code in [1]. From the simulation results we can find that 
our codes overcome the “error floor” phenomenon, and the BER curve of them will 
descend more steeply. When SNR is high, our high girth method obviously obtained an 
improved performance. 

Performance of the ZTE design for 802.16e in AWGN channel is shown in Figure 1, 
2, and 3 for rate 1/2, 2/3, 3/4. The block sizes n range from 576 to 2304 for all three code 
rates. The expansion factor z ranges from 24 to 96, as shown in Figures 1-3. The block size 
and the expansion factor are related by n = 24*z.  
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Figure 1. FER vs. Eb/N0 (dB), BPSK, rate 1/2, AWGN channel. 
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Figure 2. FER vs. Eb/N0 (dB), BPSK, rate 2/3, AWGN channel. 
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Figure 3. FER vs. Eb/N0 (dB), BPSK, rate 3/4, AWGN channel. 

 Simulation showed that normal LDPC codes’ BER curves descend more and more slow. It is 
always difficult to arrive at the point BER = 10e-6, which efficient data communication needs. 
But high girth LDPC codes can arrive at the point easily. So, high girth LDPC codes are 
suitable for situations where low BER are needed. 
 
Recommended Text Changes: 
 
[Add/Modify the following text to 802.16e_D6, adjusting the numbering as required] 
 
8.4.9.2.5 Low Density Parity Check Code (optional) 
 
8.4.9.2.5.1 Code Description 
 
The LDPC code is based on a set of one or more fundamental LDPC codes. Each of the 
fundamental codes is a systematic linear block code. Using the described methods of scaling 
and shortening in 8.4.9.2.5.3 Code Rate and Block Size Adjustment, the fundamental codes 
can accommodate various code rates and packet sizes. 
 
Each LDPC code in the set of LDPC codes is defined by a matrix H of size m-by-n, where n 
is the length of the code and m is the number of parity check bits in the code. The number of 
systematic bits is k=n-m. The matrix H is defined as: 

 
 
where Pi,j is one of a set of z-by-z permutation matrices or a z-by-z zero matrix. The matrix H 
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is expanded from a binary base matrix Hb of size mb-by-nb, where and ,with z an integer 1. 
The base matrix is expanded by replacing each 1 in the base matrix with a z-by-z permutation 
matrix, and each 0 with a z-by-z zero matrix. The base matrix nb is an integer is an integer 
multiple of 24. 
 
Hb is partitioned into two sections, where Hb1 corresponds to the systematic bits and Hb2 
corresponds to the parity-check bits, such that . Section Hb2 is 
further partitioned into two sections, where vector hb has odd weight, and H′

b2 has a dual-
diagonal structure with matrix elements at row i, column j equal to 1 for i=j, 1 for i=j+1, and 
0 elsewhere: 

 
The base matrix has hb(0)=0, hb(m-1)=0, and a third value hb(j), 0<j<(mb-1) equal to 0. The 
base matrix structure avoids having multiple weight-1 columns in the expanded matrix. 
 
In particular, the non-zero submatrices are circularly right shifted by a particular circular shift 
value. Each 1 in H′

b2 is assigned a shift size of 0, and is replaced by a z×z identity matrix 
when expanding to H. The two 1s located at the top and the bottom of hb are assigned equal 
shift sizes, and the third 1 in the middle of hb is given an unpaired shift size. 
 
Model Matrix Set 
 
Three block semi-regular model matrices Hbm are defined, one each for rates 1/2, 2/3, and 
3/4. For each code rate, Hbm will be different.  
 
A single base matrix H0 is designed for the longest code (N0 = 2304) of each code rate (1/2, 
2/3 and 3/4), and the base matrices for shorter codes (N = 576 to 2208) are derived from H0. 
For a shorter code size N corresponding to expansion factor zN, the cyclic shift value s in the 
base matrix H0 is also proportionally adjusted according to 

s = s0 mod zN 
where s0 is cyclic shift entry in H0 and mod is the module operation. 
 
For rate 1/2, girths of the designed LDPC codes are all 8. As for rate 2/3 and 3/4, girths of the 
designed LDPC codes’ are all 6.   
 
Rate 1/2: 

Hbm = 
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  38  -1  39  -1  76  -1  -1  -1  -1  -1  56  -1   0   0  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  90  -1  63  -1  -1  74  -1  54  -1  -1  -1  -1   0   0  -1  -1  -1  -1  -1  -1  -1  -1  -1
  32  -1  -1  -1  80  31  -1  -1  -1  39  -1  -1  -1  -1   0   0  -1  -1  -1  -1  -1  -1  -1  -1
  -1  82  70  -1  -1  -1  -1  15  -1  72  -1  -1  -1  -1  -1   0   0  -1  -1  -1  -1  -1  -1  -1
  55  -1  -1  -1  -1   5  54   9  -1  -1  -1  -1  -1  -1  -1  -1   0   0  -1  -1  -1  -1  -1  -1
  -1  -1  62  74  -1  -1  -1  -1  -1  -1  66  26  -1  -1  -1  -1  -1   0   0  -1  -1  -1  -1  -1
  -1  72  -1  -1  -1  17  -1  14  -1  -1  -1   8  17  -1  -1  -1  -1  -1   0   0  -1  -1  -1  -1
  10  -1  -1  39  -1  -1  -1  -1  11  42  -1  -1  -1  -1  -1  -1  -1  -1  -1   0   0  -1  -1  -1
  -1  57  -1  -1  70  -1  54  -1  -1  -1  44  -1  -1  -1  -1  -1  -1  -1  -1  -1   0   0  -1  -1
  -1  -1   2  -1  -1   4  -1  -1  12  -1  31  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   0   0  -1
  -1  -1  -1  60  65  -1  -1  12  -1  -1  -1   9  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   0   0
  -1  -1  -1  -1  -1  -1  45  -1  33  47  -1   1   0  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   0  

 
Rate 2/3: 

Hbm =  
  38  -1  39  -1  76  -1  -1  -1  -1  -1  56  -1   0   0  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1  90  -1  63  -1  -1  74  -1  54  -1  -1  -1  -1   0   0  -1  -1  -1  -1  -1  -1  -1  -1  -1
  32  -1  -1  -1  80  31  -1  -1  -1  39  -1  -1  -1  -1   0   0  -1  -1  -1  -1  -1  -1  -1  -1
  -1  82  70  -1  -1  -1  -1  15  -1  72  -1  -1  -1  -1  -1   0   0  -1  -1  -1  -1  -1  -1  -1
  55  -1  -1  -1  -1   5  54   9  -1  -1  -1  -1  -1  -1  -1  -1   0   0  -1  -1  -1  -1  -1  -1
  -1  -1  62  74  -1  -1  -1  -1  -1  -1  66  26  -1  -1  -1  -1  -1   0   0  -1  -1  -1  -1  -1
  -1  72  -1  -1  -1  17  -1  14  -1  -1  -1   8  17  -1  -1  -1  -1  -1   0   0  -1  -1  -1  -1
  10  -1  -1  39  -1  -1  -1  -1  11  42  -1  -1  -1  -1  -1  -1  -1  -1  -1   0   0  -1  -1  -1
  -1  57  -1  -1  70  -1  54  -1  -1  -1  44  -1  -1  -1  -1  -1  -1  -1  -1  -1   0   0  -1  -1
  -1  -1   2  -1  -1   4  -1  -1  12  -1  31  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   0   0  -1
  -1  -1  -1  60  65  -1  -1  12  -1  -1  -1   9  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   0   0
  -1  -1  -1  -1  -1  -1  45  -1  33  47  -1   1   0  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   0  

 
Rate 3/4: 

Hbm =            
  34  74  -1   9  -1  66  59  59  -1  35  18  -1   5  25  83  -1  -1  84   0   0  -1  -1  -1  -1
  91  -1  82  82  11  49  -1   5  12  -1  -1  41  13  87  45  61  -1  -1  -1   0   0  -1  -1  -1
  79  57  16  -1  -1  12  92  -1  61  72  82  -1  54  -1  82  41  95  -1  -1  -1   0   0  -1  -1
  -1  -1  49  18  85  -1  80  71  -1  52  13  62  -1  -1   1  66  41  95   0  -1  -1   0   0  -1
  29  81  -1  21  73  -1  50  -1  69  63  -1  81  37  11  -1  -1  74  61  -1  -1  -1  -1   0   0
  -1  12  37  -1  15   8  -1   5  61  -1  17   8  -1  20  -1  79   0  45   0  -1  -1  -1  -1   0  

 
 
8.4.9.2.5.2 LDPC encoding 
 
The code is flexible in that it can accommodate various code rates as well as packet sizes. 
The encoding of a packet at the transmitter generates parity-check bits p=(p0, …, pm-1) based 
on an information block s=(s0, …, sk-1), and transmits the parity-check bits along with the 
information block. Because the current symbol set to be encoded and transmitted is contained 
in the transmitted codeword, the information block is also known as systematic bits. The 
encoder receives the information block s=(s0, …, sk-1) and uses the matrix Hbm to determine 
the parity-check bits. The expanded matrix H is determined from the model 
matrix Hbm. Since the expanded matrix H is a binary matrix, encoding of a packet can be 
performed with vector or matrix operations conducted over GF(2). 
 
 
 
Direct Encoding (Method 1) 
 
Encoding is the process of determining the parity sequence p given an information sequence s. 
To encode, the information block s is divided into kb = nb−mb groups of z bits. Let this 
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grouped s be denoted u, 

 
where each element of u is a column vector as follows 

 
Using the model matrix Hbm, the parity sequence p is determined in groups of z. Let the 
grouped parity sequence p by denoted v, 

 
where each element of v is a column vector as follows 

 
Encoding proceeds in two steps, (a) initialization, which determines v(0), and (b) recursion, 
which determines v(i+1) from v(i), . 
An expression for v(0) can be derived by summing over the rows of Hbm to obtain 

 
where x , , is the row index of hbm where the entry is nonnegative and unpaired, 
and Pi represents the z×z identity matrix circularly right shifted by size i. Equation (1) is 
solved for v(0) by multiplying by  , and since p(x,kb) represents a 
circular shift. The recursion expressed in Equation (2) can be derived by considering the 
structure of H′

b2, 

 
where 

 
Thus all parity bits not in v(0) are determined by evaluating Equation (2) for 0 ≤ i ≤ mb−2. 
Equations (1) and (2) completely describe the encoding algorithm. These equations also have 
a straightforward interpretation in terms of standard digital logic architectures. Since the non-
zero elements p(i,j) of Hbm represent circular shift sizes of a vector, all products of the form 
Pp(i,j)u(j) can be implemented by a size-z barrel shifter. 
 
Direct Encoding (Method 2) 
 
For efficient encoding of LDPC, H are divided into the form 
 

 
where A is ( ) ( )m g n m− × − , B is ( )m g g− × , T is ( ) ( )m g m g− × − , C is ( )g n m× − , D is 
g g×  . The basic structure of the H matrix is 
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Further, all these matrices are sparse and T is lower triangular with ones along the diagonal. 
B and D part have the column degree 3 and D has shift value of 1. B is with the first entry of 
1 and shift value 0 in the middle of the column. This other entry is non-zero. 
 
Let v=(u, p1, p2) that u denotes the systematic part, p1 and p2 combined denote the parity part, 
p1 has length g, and p2 has length (Np-g). The definition equation H . v t = 0 splits into two 
equations, as in equation 3 and 4 
namely 

                     
and 

 
Define  and when we use the parity check matrix as indicated appendix we can 
get . Then from (4) we conclude that 

                       
and 

             
As a result, the encoding procedures and the corresponding operations can be summarized 
below and illustrated in Fig. 2. 
 

 

 
 

8.4.9.2.5.3 Code Rate and Block Size Adjustment 
The code design will be flexible to support a range of code rates and block sizes through code 
rate and block size adjustment of the one or more H matrices of the fundamental code set. For 
each supported rate and block size, there will be some combination of matrix selection, 
shortening, repetition, matrix expansion, and/or concatenation will be used. 
 
Different block sizes and code rates are supported through using a variable z expansion factor. 
In each case, the number of information bits is equal to the code rate times the coded block 
size n. In addition to matrix expansion, shortening is used and puncturing may be used to 
support some coded block sizes and code rates. 
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Shortening may be applied to any expanded H matrix by reducing the number of subchannels 
available for the codeword. The number of bit corresponding to the reduced number of 
subchannels is equal to the number of shortened bits L. The matrix H is designed such that 
excellent performance is achieved under shortening, with different column weights interlaced 
between the first L columns of H1 and the rest of H1. Encoding with shortening is similar to 
encoding without shortening, except that the current symbol set has only k-L systematic bits 
in the information block, s’=(s0, …, sk-L-1). When encoding, the encoder first prepends L 
zeros to s’ of length (k-L). Then the zero-padded information vector s=[0L s’] is encoded 
using H as if unshortened to generate parity bit vector p (length m). After removing the 
prepended zeros, the code bit vector x=[s’ p] is transmitted over the channel. This encoding 
procedure is equivalent to encoding s’ using the last (n-L) columns of matrix H to determine 
the parity-check vector p. 
 
The z expansion factors are determined by the target block size n and the base matrix size nb. 
Examples of the z expansion factors are given in the tables below. The base matrix nb is an 
integer is an integer multiple of 24. 
 
8.4.9.2.5.4 Packet Encoding 
 
The encoding block size k shall depend on the number of subchannels allocated and the 
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modulation specified for the current transmission. Concatenation of a number of subchannels 
shall be performed in order to make larger blocks of coding where it is possible, with the 
limitation of not passing the largest block under the same coding rate (the block defined by 
the 64-QAM modulation). The table below specifies the concatenation of subchannels for 
different allocations and modulations. The concatenation rule follows the subchannel 
concatenation rule for CC (Table 315) except that for LDPC the concatenation does not 
depend on the code rate. 
 
For any modulation and FEC rate, given an allocation of Nsch subchannels, we define the 
following parameters:  

j  parameter dependent on the modulation and FEC rate 
Nsch number of allocated subchannels 
Ffloor(Nsch/j) 
MNsch mod j 

 
The subchannel concatenation rule for CC in Table 315 is applied, noting that in Table 315 
the parameter n is equal to Nsch, the parameter k is equal to F, and the parameter m is equal to 
M. The parameter j for LDPC is determined as shown in the table below. 
 

 
 

Control information and packets that result in a codeword size n of less than 576 bits are 
encoded using convolutional coding (CC) with appropriate code rates and modulation orders, 
as described in section 8.4.9.2.1. 


