| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IEEE 802.16 Broadband Wireless Access Working Group <a href="http://ieee802.org/16">http://ieee802.org/16</a> >                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Larger CTC block sizes for OFDMA 2005-03-11                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Date<br>Submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Source(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | John Benko, Marie-Helene Hamon  Voice: +1-650-875-1593 Fax: +1-650-875-1505                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | France Telecom Research & Development 801 Gateway Blvd. Suite 500 South San Francisco, CA 94080  John.Benko@francetelecom.com, mhelene.hamon@francetelecom.com                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Re:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IEEE P802.16e/D5-2004                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Optimized interleaver parameters for CTCs (Convolutional Turbo Codes) are given to support a larger range of block sizes for OFDMA subchannelization                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Purpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | To incorporate the given tables, with accompanying text, in this contribution into IEEE 802.16e/D5-2004                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Notice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the contributing individual(s) or organization(s). The material in                                                                                                                                                                                                                                                                     | This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained |  |  |  |  |  |  |  |
| Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The contributor grants a free, irrevocable license to the IEEE to and any modifications thereof, in the creation of an IEEE Standard any IEEE Standards publication even though it may include por discretion to permit others to reproduce in whole or in part the recontributor also acknowledges and accepts that this contribution | ards publication; to copyright in the IEEE's name tions of this contribution; and at the IEEE's sole esulting IEEE Standards publication. The                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Patent Policy and Procedures  The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures  Chttp://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the use of patent(s), including patent applications, provided the IEEE receives assurance from the patent hold applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard. "Early disclosure to the Working Group of patent information that might be relevant to the standard." The contributor is familiar with the statement "IEEE standards may include the use of patent(s), including patent applications of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard. The publication will be approved for publication. Please notify the Chair <a href="mailto:chair@wirelessman.org">mailto:chair@wirelessman.org</a> a possible, in written or electronic form, if patented technology (or technology under patent application) mincorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair withis notification via the IEEE 802.16 web site <a href="mailto:http://ieee802.org/16/ipr/patents/notices">http://ieee802.org/16/ipr/patents/notices</a> . |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |

## Larger CTC block sizes for OFDMA

John Benko, Marie-Helene Hamon France Telecom Research & Development

#### **Motivation**

The concatenation/fragmentation scheme for CTC blocks is currently limited to a maximum of 60 byte data blocks. Fragmenting large packets into many small blocks yield sub-optimal performance. The performance is affected adversely in two ways. First, performance gain from FEC codes decreases with smaller block sizes. Second, fewer (larger sized) blocks will have a better chance of successful transmission than more (smaller sized) blocks.

A new concatenation rule for CTC blocks is proposed here. The new rule increases the sizes of the fragmented blocks in the OFDMA channel. In order to avoid backward compatibility issues with the concatenation defined in 802.16d, this proposal will suggest an extended (optional) scheme that will supplement the old block sizes and subchannelization.

With the current standard, the only way to see the performance gains with higher block sized CTCs is to use the *optional* H-ARQ mode. Optimized code performance (by increasing block size) should not be limited to H-ARQ, especially when it is straightforward to implement. Assuming a decoder is available to handle 600 byte data packets (max block size of H-ARQ), the added complexity to the original CTC implementation is negligible, when increasing the number of possible block-sizes. To implement this *only* requires the additional storage of the new P0, P1, P2, P3 parameters. This will ensure maximum performance gain with the larger block sizes. In addition to the new large block sizes, a modification to the concatenation rules is also proposed.

### **Proposed Solution**

In this proposal the maximum block size, which was previously only 60 information bytes in non H-ARQ mode, will be increased to a maximum of 240 information bytes. This corresponds to an increase in subchannel slots used in QPSK from 10 to up to 40, and in 64QAM from 3 up to 12. Outer interleaver parameters for the new block sizes are also defined in Table 327a.

#### **Performance**

In order for packets to be received correctly, all block fragments must be received without error. A direct result of increasing the block sizes is a decrease in the number of fragmented blocks needed to be sent. Due to the concatenation scheme, the error rate performance of a burst is dependent on the number of FEC blocks and the size of each block. The concatenation ensures the minimum length of the last two FEC blocks to be at least half of the maximum FEC block length. This results in the concatenation of a large packet into a number of max FEC block sizes plus 2 blocks of FEC size at least \_ of the max FEC block length.

Below two examples are given:

QPSK, Rate = \_, 576 byte and 1500 byte MTU packets, yielding 96 and 250 sub-channels respectively.

| Concatenatio<br>n Scheme | <b>J</b> (QPSK, R=1/2) | # Blocks<br>576 bytes | Coded<br>Blocks(bytes) 576 | # Blocks<br>1500 byte | Coded Blocks (bytes)<br>1500 byte data packet |
|--------------------------|------------------------|-----------------------|----------------------------|-----------------------|-----------------------------------------------|
|                          |                        |                       | byte data packet           |                       |                                               |
| Current                  | 10                     | 10                    | 8*120, 2*96                | 26                    | 24*120, 2*60                                  |
| Proposed                 | 40                     | 3                     | 1*480, 1*348, 1*324        | 7                     | 5*480, 2*300                                  |

In the case of a 1500 byte MTU packet, the proposed scheme will reduce the number of transmitted block from 26 to 7. This will result in a significant decrease in PER. The first figure depicts the performance obtained with the CTC blocksizes involved in the 1500-byte MTU packet example (current and new concatenation scheme) and show the gains when larger blocksizes are employed. The second figure shows the potential performance improvement with the new concatenation scheme.

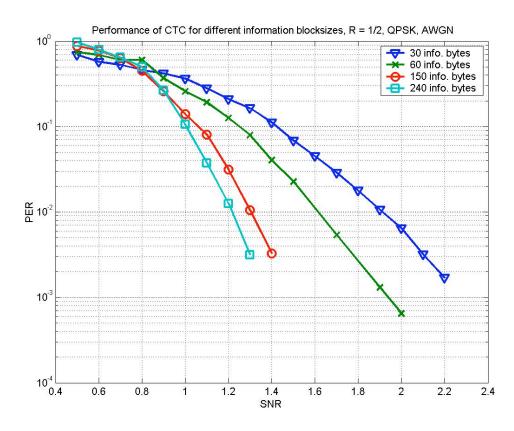



Figure 1 – Performance of CTC for different blocksizes (1500-byte MTU packet example)

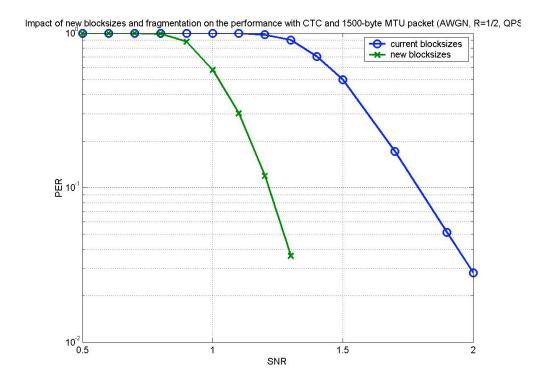



Figure 2 – Performance comparison of the current concatenation scheme and the proposed solution

**Suggestion:** To add Tables 322a, 323a, and 324a (increasing number of blocks), to Section 8.4.9.2.3.1, and Table 327a to Section 8.4.9.2.3.4.2 with the following text.

#### 1. MAC Modifications

This section will include the necessary modifications in the MAC to signal the CTC block extension mode.

#### 2. Section 8.4.9.2.3.1

<ADDED TEXT> A new concatenation scheme of the CTC blocks is defined to allow frame sizes up to 240 bytes. The rules to be used with the new concatenation scheme are defined fully in Tables 322a and 323a. Table 324a specifies optimized interleaver parameters for frame sizes (unencoded blocks) between 6-240 bytes. This is used for OFDMA subchannelization with QPSK, 16-QAM and 64-QAM.

Table 322a - Subchannel concatenation rule for CTC

| Number of Subchannels                                              | Subchannels concatenated                                                                             |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| $\underline{\mathbf{n}} \leq \underline{\mathbf{j}}  \mathbf{AND}$ | 1 block of n slots                                                                                   |
| $\underline{n \mod 7 \neq 0}$                                      |                                                                                                      |
| n<=j AND                                                           | 1 block of 4n/7 slots                                                                                |
| $\underline{n \bmod 7 = 0}$                                        | 1 block of 3n/7 slots                                                                                |
|                                                                    |                                                                                                      |
| <u>n &gt; j</u>                                                    | $\underline{\text{If}(n \mod j = 0)}$                                                                |
|                                                                    | <u>k blocks of j slots</u>                                                                           |
|                                                                    | <u>else</u>                                                                                          |
|                                                                    | (k-1) blocks of j slots                                                                              |
|                                                                    | 1 block of L <sub>b1</sub> slots                                                                     |
|                                                                    | 1 block of L <sub>b2</sub> slots                                                                     |
|                                                                    | Where:                                                                                               |
|                                                                    | $\underline{L_{b1}} = \text{ceil}((m+j)/2)$                                                          |
|                                                                    | $\underline{L}_{b2} = floor((m+j)/2)$                                                                |
|                                                                    | $\underline{\text{If } (\underline{L}_{b1} \mod 7 = 0) \text{ or } (\underline{L}_{b2} \mod 7 = 0)}$ |
|                                                                    | $\underline{L_{b1}} = \underline{L_{b1}} + 1; \ \underline{L_{b2}} = \underline{L_{b2}} - 1;$        |
|                                                                    |                                                                                                      |

Table 323a – Encoding subchannel concatenation for different rates in CTC

| Modulation and | į             |
|----------------|---------------|
| <u>rate</u>    |               |
| QPSK 1/2       | j = 40        |
| QPSK 3/4       | j = 26        |
| QAM16 1/2      | j = 20        |
| QAM16 3/4      | j = 13        |
| QAM64 1/2      | j = 13        |
| QAM64 2/3      | <u>j = 10</u> |
| QAM64 3/4      | <u>j = 8</u>  |
| QAM64 5/6      | <u>j = 8</u>  |

Table 324a – CTC channel coding for additional OFDMA Block Sizes

| Data           | Encoded data block size (bytes) |     |     |     |     |     |     |     |     |    |       |     |     |
|----------------|---------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|----|-------|-----|-----|
| block          | QP                              | SK  | 160 | )AM |     | 640 | MAÇ |     | Ν   | P0 | 20 P1 | P2  | Р3  |
| size<br>(byte) | 1/2                             | 3/4 | 1/2 | 3/4 | 1/2 | 2/3 | 3/4 | 5/6 |     |    |       |     |     |
| 6              | 12                              | -   | -   | -   | -   | -   | -   |     | 24  | 5  | 0     | 0   | 0   |
| 9              | -                               | 12  | -   | -   | -   | -   | -   | -   | 36  | 11 | 18    | 0   | 18  |
| 12             | 24                              | -   | 24  | -   | -   | -   | -   | -   | 48  | 13 | 24    | 0   | 24  |
| 18             | 36                              | 24  | -   | 24  | 36  | -   | -   | -   | 72  | 11 | 6     | 0   | 6   |
| 24             | 48                              | -   | 48  | _   | _   | 36  | -   | -   | 96  | 7  | 48    | 24  | 72  |
| 27             | -                               | 36  | -   | -   | -   | -   | 36  | -   | 108 | 11 | 54    | 56  | 2   |
| 30             | 60                              | -   | -   | -   | -   | -   | -   | 36  | 120 | 13 | 60    | 0   | 60  |
| 36             | 72                              | 48  | 72  | 48  | 72  | -   | -   | -   | 144 | 17 | 74    | 72  | 2   |
| 45             | -                               | 60  | -   | -   | -   | -   | -   | -   | 180 | 11 | 90    | 0   | 90  |
| 48             | 96                              | -   | 96  | -   | -   | 72  | -   | -   | 192 | 11 | 96    | 48  | 144 |
| 54             | 108                             | 72  | -   | 72  | 108 | -   | 72  | -   | 216 | 13 | 108   | 0   | 108 |
| 60             | 120                             | -   | 120 | -   | -   | -   | -   | 72  | 240 | 13 | 120   | 60  | 180 |
| 66             | 132                             | -   | -   | -   | -   | -   | -   | -   | 264 | 23 | 2     | 160 | 30  |
| 72             | 144                             | 96  | 144 | 96  | 144 | 108 | -   | -   | 288 | 23 | 50    | 188 | 50  |
| 78             | 156                             | -   | -   | -   | -   | -   | -   | -   | 312 | 23 | 102   | 64  | 38  |
| 81             | -                               | 108 | -   | -   | -   | -   | 108 | -   | 324 | 11 | 172   | 164 | 16  |
| 90             | 180                             | 120 | -   | 120 | 180 | -   | -   | 108 | 360 | 29 | 56    | 0   | 68  |
| 96             | 192                             | -   | 192 | -   | -   | 144 | -   | -   | 384 | 29 | 68    | 140 | 56  |
| 99             | -                               | 132 | -   | -   | -   | -   | -   | -   | 396 | 29 | 36    | 128 | 76  |
| 102            | 204                             | -   | -   | -   | -   | -   | -   | -   | 408 | 29 | 124   | 204 | 40  |
| 108            | 216                             | 144 | 216 | 144 | 216 | ı   | 144 | -   | 432 | 13 | 0     | 4   | 8   |
| 114            | 228                             | ı   | -   | -   | ı   | ı   | -   | -   | 456 | 31 | 100   | 224 | 104 |
| 117            | -                               | 156 | -   | -   | ı   | ı   | -   | -   | 468 | 31 | 98    | 220 | 98  |
| 120            | 240                             | ı   | 240 | -   | ı   | 180 | -   | 144 | 480 | 31 | 52    | 240 | 52  |
| 132            | 264                             | ı   | 264 | -   | ı   | ı   | -   | -   | 528 | 31 | 24    | 36  | 104 |
| 135            | -                               | 180 | -   | -   | -   | -   | 180 | -   | 540 | 31 | 42    | 248 | 34  |
| 138            | 276                             | -   | -   | -   | -   | -   | -   | -   | 552 | 35 | 14    | 136 | 6   |
| 144            | 288                             | 192 | 288 | 192 | 288 | 216 | -   | -   | 576 | 31 | 42    | 232 | 18  |
| 150            | 300                             | -   | -   | -   | -   | -   | -   | 180 | 600 | 37 | 20    | 152 | 0   |
| 153            | -                               | 204 | -   | -   | -   | -   | -   | -   | 612 | 37 | 6     | 164 | 14  |
| 156            | 312                             | -   | 312 | -   | -   | -   | -   | -   | 624 | 37 | 312   | 156 | 468 |
| 162            | 324                             | 216 | -   | 216 | 324 | -   | 216 | -   | 648 | 37 | 62    | 160 | 34  |
| 171            | -                               | 228 | -   | -   | -   | -   | -   | -   | 684 | 37 | 108   | 136 | 8   |
| 174            | 348                             | -   | -   | -   | -   | -   | -   | -   | 696 | 37 | 0     | 128 | 12  |

| 180 | 360 | 240 | 360 | 240 | 360 | -   | -   | 216 | 720 | 37 | 92  | 100 | 68  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|
| 186 | 372 | ı   | -   | ı   | -   | -   | ı   | -   | 744 | 37 | 54  | 196 | 50  |
| 192 | 384 | ı   | 384 | ı   | -   | 288 | ı   | -   | 768 | 19 | 384 | 216 | 600 |
| 198 | 396 | 264 | -   | 264 | 396 | -   | ı   | -   | 792 | 41 | 0   | 228 | 24  |
| 204 | 408 | ı   | 408 | ı   | -   | -   | ı   | -   | 816 | 37 | 408 | 204 | 612 |
| 207 | -   | 276 | -   | ı   | -   | -   | ı   | -   | 828 | 41 | 136 | 288 | 192 |
| 216 | 432 | 288 | 432 | 288 | 432 | 324 | 288 | -   | 864 | 19 | 2   | 16  | 6   |
| 222 | 444 | ı   | -   | ı   | -   | -   | ı   | -   | 888 | 43 | 10  | 220 | 18  |
| 225 | -   | 300 | -   | ı   | -   | -   | ı   | -   | 900 | 43 | 8   | 56  | 20  |
| 228 | 456 | ı   | 456 | ı   | -   | -   | ı   | -   | 912 | 43 | 96  | 8   | 124 |
| 234 | 468 | 312 | -   | 312 | 468 | -   | -   | -   | 936 | 43 | 120 | 140 | 124 |
| 240 | 480 | -   | 480 | -   | -   | 360 | -   | 288 | 960 | 43 | 52  | 120 | 28  |

# 3. Section 8.4.9.2.3.4.2 Subblock interleaving

<ADDED TEXT> Table 327a (along with Table 327) gives subblock interleaver parameters for the new CTC subchannelization defined by Tables 322a, 323a, 324a.

Table 327a – Parameters for subblock interleavers

| Block size | N   |     | Interleaver<br>neters | Block size | N   | Subblock Interleaver<br>Parameters |   |  |
|------------|-----|-----|-----------------------|------------|-----|------------------------------------|---|--|
| (bits) NEP |     | m J |                       | (bits) NEP |     | m                                  | J |  |
| 48         | 24  | 3   | 3                     | 960        | 480 | 8                                  | 2 |  |
| 72         | 36  | 4   | 3                     | 1056       | 528 | 8                                  | 3 |  |
| 96         | 48  | 4   | 3                     | 1080       | 540 | 8                                  | 3 |  |
| 144        | 72  | 5   | 3                     | 1104       | 552 | 8                                  | 3 |  |
| 192        | 96  | 5   | 3                     | 1152       | 576 | 8                                  | 3 |  |
| 216        | 108 | 6   | 3                     | 1200       | 600 | 8                                  | 3 |  |
| 240        | 120 | 6   | 2                     | 1224       | 612 | 8                                  | 3 |  |
| 288        | 144 | 6   | 3                     | 1248       | 624 | 8                                  | 3 |  |
| 360        | 180 | 6   | 3                     | 1296       | 648 | 8                                  | 3 |  |
| 384        | 192 | 6   | 3                     | 1368       | 684 | 8                                  | 3 |  |
| 432        | 216 | 6   | 4                     | 1392       | 696 | 8                                  | 3 |  |
| 480        | 240 | 7   | 2                     | 1440       | 720 | 8                                  | 3 |  |
| 528        | 264 | 7   | 3                     | 1488       | 744 | 8                                  | 3 |  |
| 576        | 288 | 7   | 3                     | 1536       | 768 | 8                                  | 4 |  |
| 624        | 312 | 7   | 3                     | 1584       | 792 | 8                                  | 4 |  |
| 648        | 324 | 7   | 3                     | 1632       | 816 | 8                                  | 4 |  |
| 720        | 360 | 7   | 3                     | 1656       | 828 | 8                                  | 4 |  |
| 768        | 384 | 7   | 3                     | 1728       | 864 | 8                                  | 4 |  |
| 792        | 396 | 7   | 4                     | 1776       | 888 | 8                                  | 4 |  |
| 816        | 408 | 7   | 4                     | 1800       | 900 | 8                                  | 4 |  |
| 864        | 432 | 7   | 4                     | 1824       | 912 | 8                                  | 4 |  |
| 912        | 456 | 8   | 2                     | 1872       | 936 | 8                                  | 4 |  |
| 936        | 468 | 8   | 2                     | 1920       | 960 | 9                                  | 2 |  |