MU-MIMO with Fixed Beamforming for

FDD Systems

Manfred Litzenburger, Thorsten Wild, Michael Ohm

Alcatel-Lucent R&I

Stuttgart, Germany

MU-MIMO - Motivation

MU-MIMO

- Supporting multiple users in a cell on the same time-frequency resource
- Exploit channel orthogonality of spatially separated users

For medium- to large- size cells

- Low angular spread, low diversity order of the channel
- Short-term channel state information (CSI) may be quickly outdated in an FDD system, only long term CSI available
- % go for downlink-beamforming
 - ó one data stream per user allows simple one-antenna terminals
 - 6 exploiting multi-user diversity

Beamforming for SDMA

Grid of 8 fixed beams with 4 antenna elements (linear array, $\lambda/2$ -spacing) Common pilots (for all users) per antenna (pilots are not beamformed) % saves radio resources

Mobile station selects best beam and signals beam index (3 bit) back to the basestation

Scheduling for Fixed Beams and SDMA

- ó Avoid intra-cell interference
 - by optimizing weights
 - minimum distance of simultaneous serving beams
- Scheduling scheme: User selection
 - Extension of score based scheduler
 - Plus additional beam distance constraints

System Simulations

Simulation Set-up

- Playground: 7 tri-sectorized sites = 21 cells, 10 Mobile Terminals per cell
- Frequency-reuse 1
- ^o Adaptive modulation / coding: from QPSK, R=1/9 to 64QAM, R=9/10
- Extended Spatial Channel Model, Urban Macro, 3 km/h
- HARQ included
- Pilot and control overhead explicitly simulated
- 2 antennas at mobile terminal, max. ratio combining

System Simulation Results

- The proposed scheme achieves a spectral efficiency of 2.5 bit/s/Hz/sector
- Outperforms SU-MIMO schemes

System Simulation Results

- 2x2 X-pol: 4 antennas in a radome of 32 cm
 - 6 ±45° Polarization
 - \circ 2 subarrays in $\lambda/2$ spacing
 - ó Very compact
 - 6 Correlated and uncorrelated pairs offer a lot of possibilities in RX- and TX signal processing

Beam patterns per polarization for a 2-element sub-array

- ó half power beam width of a single antenna element = 70 deg.
- ó Sub-array beams have a HPBW of about 45 deg.

First Component: Exploiting Correlation by Beamforming

- 6 Each subarray uses one out of 4 different fixed beams (2 bit codebook size)
- This beam will depend on the direction of the user and will be constant over the
 whole band and changes only very slowly in time
 - Best suitable beam can be estimated via uplink by direction estimation algorithms for each MS
 - Alternatively this best beam index information is fed back by the MS on a very low rate feedback channel
- Output of the bound of the b

Second Component: Exploiting Decorrelation depending on MS situation

- 6 Good channel conditions: Spatial multiplexing one data stream per polarization, to one or two MSs
- 6 Bad channel conditions: open-loop or closed-loop Tx-diversity, depending on MS velocity

- For urban / sub-urban / wide area scenarios
- ° MU-options
 - 6 User separation by polarization
 - One user per polarization orientation / two users per beam
 - Ó User separation by beams
 - One user per beam
 - Use the two polarizations for spatial multiplexing or Tx-diversity, depending on channel quality and number of MS Rx antennas
 - Interesting for more than 4 Tx antennas (e.g. 8Tx@4*2 xpol), as more beams are possible and beams get narrower)

MU-MIMO: User separation by polarization

MU-MIMO: User separation by beam

MU-MIMO - Conclusion

MU-MIMO

- Based on beamforming with common pilots
- For outdoor and wide area deployment
- Beamforming schemes can be devised for different antenna configurations
- Allows simple receivers at the mobile terminal
- Allows significant enhancement of spectral efficiency
- Schemes with X-polarized antennas offer flexible combinations of beamforming and spatial multiplexing / diversity