Simultaneous Transmit and Receive (STR) Relaying

Document Number: **S802.16m-10/0202** Date Submitted: **2010-03-07**

Source:

Chanho Min, Heewon Kang, Youngbin ChangSeunghee Han, Youngsoo KimEmail: chanho.min@gmail.com, hkang@samsung.com, yb.chang@samsung.com

Samsung Electronics

Venue: IEEE Session #66

Re: IEEE 802.16-10/0011, IEEE 802.16 Working Group Letter Ballot Recirc #31 / Topic: Relay Format (Section 16.6.1)

Purpose: To be discussed and adopted by TGm for P802.16m/D5

Notice:

This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the "Source(s)" field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein.

Release:

The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy:

The contributor is familiar with the IEEE-SA Patent Policy and Procedures:

<<u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>> and <<u>http://standards.ieee.org/guides/opman/sect6.html#6.3</u>>. Further information is located at <<u>http://standards.ieee.org/board/pat/pat-material.html</u>> and <<u>http://standards.ieee.org/board/pat</u>>.

Motivation

- The STR relaying has been adopted as one of the relaying options in the 802.16j standard.
 - Simultaneous communication with subordinate station(s) and the superordinate station is performed on the same carrier frequency or different carrier frequencies.
- Allowing STR relaying is not accompanied by significant changes in the current standard draft.
 - Does not require any new management message, new field in existing messages and so on.

STR Relaying

- Two kinds of STR relaying are possible :
 - STR relaying on different carrier frequencies
 - In general, the term "outband relaying" is used for this case.
 - STR relaying on the same carrier frequency
 - It differs from repeater in that ARS decodes the received data and is able to reschedule it.
 - Also, it can use different MCS levels which is appropriate for channel condition.

STR Relaying on the Same Carrier

- Expected benefits
 - Potential increase in spectral efficiency
 - Re-utilizes ABS-ARS link resources as ARS-AMS link resources
 - Reduced overhead
 - No need for switching gap (R-TTI and R-RTI), relay amble, and broadcasting information for frame configuration
 - Lager uplink coverage
 - Long TTI can be applied to the whole UL frame which is not divided by Relay zone and Access zone.
- Potential impact, but solvable (Refer to Appendix A, B)
 - Needs to reduce interference from relay TX to relay RX

Comparison of Three Relaying Options

Aspects to be clarified	TTR relaying	STR relaying on different carriers	STR relaying on the same carrier
# of antennas sets needed	(+) One antenna set	(-) Two antenna sets	(-) Two antennas sets
Additional carrier frequency	(+) Not required	(-) Required	(+) Not required
Zone configuration	(-) Required (Access zone & Relay zone)	(+) Not required	(+) Not required
R-TTI & R-RTI	(-) Required	(+) Not required	(+) Not required
Relay amble	(-) Required	(+) Not required	(+) Not required
Spectral efficiency	(-) Low	(-) Very low	(+) High
Loss in uplink coverage	(-) Yes	(+) No loss	(+) No loss
Self-interference at Relay	(+) No	(+) No	(-) Yes

FDD DL PHY Frame Structure (when TTR ARSs are supported)

FDD DL PHY Frame Structure (when STR ARSs are supported)

<	FDD DL PHY Frame : 5 ms (8 AAI subframes + Idle time)							
								Idle time
DL SF0(6)	DL SF1(6)	DL SF2(6)	DL SF3(6)	DL SF4(6)	DL SF5(6)	DL SF6(6)	DL SF7(6)	[ABS Frame Structure] (carrier f ₁)
A-preamble								* STR ARS receives signal from ABS during the radio frame.
DL SF5(6)	DL SF5(6)	DL SF5(6)	DL SF5(6)	DL SF5(6)	DL SF5(6)	DL SF6(6)	DL SF7(6)	[ARS Frame Structure] (carrier f ₁)
DL SF0(6)	DL SF1(6)	DL SF2(6)	DL SF3(6)	DL SF4(6)	DL SF5(6)	DL SF6(6)	DL SF7(6)	[ARS Frame Structure] (carrier f ₂)
A-preamble								* STR ARS can transmit signal to AMSs during the radio frame. Hence, capacity between ARS and AMSs can be increased.
DL SF0(6)	DL SF1(6)	DL SF2(6)	DL SF3(6)	DL SF4(5)	DL SF5(6)	DL SF6(6)	DL SF7(6)	[AMS Frame Structure] (carrier f ₂)
						Transmit mode	Receive mode	

 \checkmark Carriers f_1 and f_2 can be the same or different.

FDD UL PHY Frame Structure (when TTR ARSs are supported)

FDD UL PHY Frame Structure (when STR ARSs are supported)

 \checkmark Carriers f_1 and f_2 can be the same or different.

TDD PHY Frame Structure (when TTR ARSs are supported)

TDD PHY Frame Structure (when STR ARSs are supported)

 \checkmark Carriers f_1 and f_2 can be the same or different.

Proposed AWD Text Modification

• Refer to IEEE C802.16m-10/0202.

Appendix A:

Combating Self-interference in STR Relaying on the Same Carrier

Understanding What Causes Self-interference

- Self-interference
 - Relay TX antenna and relay RX antenna is closely located.
 - In STR relaying, feedback interference from relay TX antenna can be significantly larger than the desired signal.
 - Because the relative position of relay TX antenna and relay RX antenna is fixed, the channel is expected to be a slowly varying channel.

Combating Self-interference (1/4)

- Means to reduce interference from relay TX to relay RX
 - 1) Isolation between relay TX antenna and relay RX antenna
 - 2) Interference cancellation

Combating Self-interference (2/4)

- How much isolation can be achieved?
 - \rightarrow Upwards of 80 dB
 - Total isolation = G_t + (free space loss) + G_r
 - G_t : Gain of the TX antenna toward RX antenna
 - G_r : Gain of the RX antenna toward TX antenna
 - Free-space loss : 32.44 + 20*log10(distance(km))

+ 20*log10(frequency(MHz))(dB)

- Typical example for downlink case

ltem	Isolation	Remark
Gt	31 dB	SP antenna (14 dBi) F/B (front-to-back) ratio: 45 dB
Gr	6 dB +	Sector antenna (19 dBi)
Free-space loss	43.2 dB	Vertical distance: 1.5m Frequency: 2,300 MHz
Total	80.2 dB +	

Combating Self-interference (3/4)

- Principle of self-interference cancellation
 - Received signal at relay receiver $\mathbf{y}[m,k] = \mathbf{H}[m,k]\sqrt{P_s}\mathbf{s}[m,k] + \mathbf{H}_I[m,k]\sqrt{P_I}\mathbf{x}[m,k] + \sqrt{P_n}\mathbf{n}[m,k]$

 $\left(E\left\{\mathbf{ss}^{H}\right\}=\mathbf{I}, E\left\{\mathbf{xx}^{H}\right\}=\mathbf{I}, E\left\{\mathbf{nn}^{H}\right\}=\mathbf{I}\right)$

Self-interference cancellation

 $\mathbf{y}[m,k] - \hat{\mathbf{H}}_{I}[m,k] \sqrt{P_{I}} \mathbf{x}[m,k]$

 $= \mathbf{H}[m,k]\sqrt{P_s}\mathbf{s}[m,k] + (\mathbf{H}_I[m,k] - \hat{\mathbf{H}}_I[m,k])\sqrt{P_I}\mathbf{x}[m,k] + \sqrt{P_n}\mathbf{n}[m,k]$ $\approx \mathbf{H}[m,k]\sqrt{P_s}\mathbf{s}[m,k] + \sqrt{P_n}\mathbf{n}[m,k]$

Combating Self-interference (4/4)

- What can be achieved by interference cancellation (IC) ?
 - Up to SIR of -40 dB, high degree of cancellation can be achieved.

Putting Isolation and Cancellation Together

- Relation between relay transmission power and SIR
 - Given relay TX power and isolation between relay TX and RX antennas, SIR value can be found using the previous figures.
 - With calculated SIR and SNR at relay RX, the difference between $SNR_{w/o interf.}$ and SNR_{IC} can be found using the previous figure.
 - Up to SIR of -40 dB, there is no noticeable SNR degradation due to residual interference after interference cancellation.

Relay Tx. Power	Isolation	Relay Tx. Power after Isolation	BS Signal Power @ Relay Rx	Distance from BS ¹⁾	SIR
			-60dBm	~ 200m	-10dB
30dBm 80dB	-50dBm	-70dBm	~ 500m	-20dB	
		-80dBm	~ 1300m	-30dB	
		-90dBm	1300m +	-40dB	

1) Assumes WINNER B5a channel model (similar to LOS channel of 16j) with fading margin of 10 dB.

What the Results Say (1/2)

- Some situations naturally provide isolation
 - e.g. underground and coverage hole.
 - Some operators may want to operate this usage scenario.

What the Results Say (2/2)

- In some situations, reasonable isolation may be possible, and more can be done by using interference cancellation.
 - e.g. when the relay TX and RX antennas are sufficiently separated with appropriate antenna arrangement.
 - The graph shows that high degree of cancellation can also be achieved.

Appendix B:

Comparison between ICS Repeater and STR Relay on the Same Carrier

Interference Cancellation System (ICS) Repeater

- The concept of ICS
 - 1) Estimate feedback channel using transmitted and received signal
 - 2) Regenerate feedback signal using transmission signal and estimated feedback channel information
 - 3) Extract desired signal by subtraction regenerated feedback signal from received signal
- Many ICS repeater products for Mobile-WiMAX have been commercialized.
 - e.g. ubiqam, Airpoint, etc.

ubiqam's Product

Description	UBQ27xx
Operation Mode	Decode and Forward (Relay)Amplify and Forward (Repeater)
Duplexing	TDD or H-FDD
Frequency bands	 UBQ2725: 2.5-2.7GHz UBQ2735: 3.3-3.8 GHz
Tx Power	27dBm (0.5W)
STR™ Performance	 40 dB gain over isolation @ 64 QAM (Relay Mode) 15 dB gain over isolation (Repeater mode)
MIMO Support	 Access: 2 RX path ; 1 TX path (2 TX path optional) Backhaul: 2 RX path ; 1 TX path (2 TX path optional)
Gain & AGC Range	80~30dB (Repeater mode)
Total System Delay	≤ 5~8us (Repeater mode)
RF Performance	Transmit/Receive EVM > 32dB Adjacent channel rejection > 22dB Alternate channel rejection > 43 dB
Throughput	Maximum theoretical throughput >35 Mbps (total DL + UL)
Backhaul (Subscriber) Baseband	802.16e (WiMAX Forum [®] Wave-II Certified)
Interfaces	 Ethernet: RJ-45 100Base-T Antenna: 4 X N-Type

☑ Refer to the following web site : <u>www.ubiqam.com</u>

Airpoint's Product

WEWE40 Wave-Enhancer for Wibro Enjoy

Mobile-WiMAX ICS Repeater Specification

Frequency		2331.5MHz ~ 2358.5MHz(TDD)	
Output Power	FWD	40dBm/Total	
	RVS	23dBm/Total	
0 1 0 i	FWD	65dB ~ 95dB(30dB)	
System Gain	RVS	65dB ~ 95dB(30dB)	
System De	lay	3.5us	
EVM(64QAM) Gain = Isol + 5dB		5%	
Noise Figure (RVS)		5dB	
Max Operating Gain		Isolation + 5dB Isolation + 15dB (LAB)	
Cancellation Range		6us	
Size / Weight		400(W)x600(H)x240(D) / 38Kg	
Power Consumption		350W Max	
Reference site		Test site in Seoul	

☑ Refer to the following web site : <u>www.airpointglobal.com</u>

Comparison between ICS Repeater and STR Relay on the Same Carrier

ICS Repeater

STR Relay on the same carrier

- Difference between ICS repeater and STR relay
 - An ICS repeater amplifies and forwards the delayed input signal, whereas a STR relay sends the regenerated signal in Tx. modem.
- STR relay has better IC performance than ICS repeater.
 - It is because STR relay can utilize the whole signal transmitted from it for channel estimation between its transmitter and receiver, which is used for interference cancellation.
 - In ICS repeater, only pilot signal can be utilized for channel estimation.
 - \rightarrow IC accuracy of STR relay is better than that of ICS repeater.
 - Example: According to ubiqam's product,
 - 40 dB gain over isolation @ 64 QAM (Relay mode)
 - 15 dB gain over isolation (Repeater mode)

 \square IC (Interference Cancellation)