IEEE C802.20-03/77

Project	IEEE 802 Executive Committee Study Group on Mobile Broadband Wireless Access < <u>http://ieee802.org/20</u> >					
Title	Summary of delay profiles for MBWA					
Date Submitted	2003-09-08					
Source(s)	Jin Weon Chang	Voice: +82-31-279-5117 Fax: +82-31-279-5130 Email: jwchang@ieee.org				
	DS (Dong Seek) Park	Voice: +82-31-279-5090 Fax: +82-31-279-5130 Email: dspark@samsung.com				
	Joseph R. Cleveland	Voice: 972-761-7981 Fax: 972-761-7909 Email: jclevela@sta.samsung.com				
Re:	802.20 WG Call for Contributions					
Abstract	This document provides summary of delay profile	es that major international standard organizations suggested.				
Purpose	Contribute to the discussion and development of t	the 802.20 Requirements and Channel Model.				
Notice	not binding on the contributing individual(s) or or	EE 802.20 Working Group. It is offered as a basis for discussion and is rganization(s). The material in this document is subject to change in form reserve(s) the right to add, amend or withdraw material contained				
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802 MBWA ECSG.					
Patent Policy		cy, as outlined in <u>Section 6.3 of the IEEE-SA Standards Board</u> <u>des/opman/sect6.html#6.3</u> > and in Understanding Patent Issues During <u>seee.org/board/pat/guide.html</u> >.				

Summary of Delay Profiles for MBWA

Jin W. Chang

jwchang@ieee.org

Contents

- Rationale
- Summary of standard delay profiles
 - Delay profiles by ITU
 - Delay profiles by COST 259
 - Delay profiles by 3GPP
 - Delay profiles by 3GPP2
- Another delay profile reported
- Concluding remarks
- Recommendations

Rationale

- The intention of this contribution is to help discussions on delay spread in IEEE 802.20 MBWA.
- Delay profile is very important since it can have major impact on the system performance.
- Agreement needed on specific model set for evaluation criteria

Delay Profiles by ITU^[1]-i

- Parameters for channel impulse response model
 - Channel A: low delay spread case
 - Channel B: median delay spread case

	Channel A		Chan	inel B
Test environment	r.m.s. (ns)	<i>P</i> (%)	r.m.s. (ns)	P (%)
Indoor office	35	50	100	45
Outdoor to indoor and pedestrian	45	40	750	55
Vehicular – high antenna	370	40	4 000	55

Delay Profiles by ITU^[1]-ii

Indoor office environment

Тар	Chan	inel A	Chanr	Doppler	
	Relative delay (ns)	Average power (dB)	Relative delay (ns)	Average power (dB)	spectrum
1	0	0	0	0	Flat
2	50	-3.0	100	-3.6	Flat
3	110	-10.0	200	-7.2	Flat
4	170	-18.0	300	-10.8	Flat
5	290	-26.0	500	-18.0	Flat
6	310	-32.0	700	-25.2	Flat

Delay Profiles by ITU^[1]-iii

 Outdoor to indoor and pedestrian environment

Тар	Chan	nel A	Chanr	Doppler	
	Relative delay (ns)	Average power (dB)	Relative delay (ns)	Average power (dB)	spectrum
1	0	0	0	0	Classic
2	110	-9.7	200	-0.9	Classic
3	190	-19.2	800	-4.9	Classic
4	410	-22.8	1 200	-8.0	Classic
5	_	_	2 300	-7.8	Classic
6	_	-	3 700	-23.9	Classic

Delay Profiles by ITU^[1]-iv

• Vehicular environment

	Chan	inel A	Chann	Doppler			
Тар	Relative delay (ns)	Average power (dB)	Relative delay (ns)	Average power (dB)	spectrum		
1	0	0 0.0		0 0.0 0 -2.5		-2.5	Classic
2	310	-1.0	300	0	Classic		
3	710	-9.0	<i>8.900</i>	-12.8	Classic		
4	1 090	-10.0	<i>12 900</i>	-10.0	Classic		
5	1 730	-15.0	17 100	-25.2	Classic		
6	2 510	-20.0	20 000	-16.0	Classic		

Delay profiles by COST 259^[2]-i (TU, Typical Urban)

Tap number	Relative time (µs)	average relative power (dB)	doppler spectrum
1	0	-5.7	Class
2	0.217	-7.6	Class
3	0.512	-10.1	Class
4	0.514	-10.2	Class
5	0.517	-10.2	Class
6	0.674	-11.5	Class
7	0.882	-13.4	Class
8	1.230	-16.3	Class
9	1.287	-16.9	Class
10	1.311	-17.1	Class
11	1.349	-17.4	Class
12	1.533	-19.0	Class
13	1.535	-19.0	Class
14	1.622	-19.8	Class
15	1.818	-21.5	Class
16	1.836	-21.6	Class
17	1.884	-22.1	Class
18	1.943	-22.6	Class
19	2.048	-23.5	Class
20	2.140	-24.3	Class

Delay profiles by COST 259^[2]-ii (RA, Rural Area)

Tap number	Relative time (μ s)	average relative power (dB)	doppler spectrum
1	0	-5.2	Direct path,
			$f_s = 0.7 \cdot f_D$
2	0.042	-6.4	Class
3	0.101	-8.4	Class
4	0.129	-9.3	Class
5	0.149	-10.0	Class
6	0.245	-13.1	Class
7	0.312	-15.3	Class
8	0.410	-18.5	Class
9	0.469	-20.4	Class
10	0.528	-22.4	Class

Delay profiles by COST 259^[2]-iii (HT, Hilly Terrain)

Tap number	Relative time (µs)	average relative power (dB)	doppler spectrum
1	0	-3.6	Class
2	0.356	-8.9	Class
3	0.441	-10.2	Class
4	0.528	-11.5	Class
5	0.546	-11.8	Class
6	0.609	-12.7	Class
7	0.625	-13.0	Class
8	0.842	-16.2	Class
9	0.916	-17.3	Class
10	0.941	-17.7	Class
11	15.000	-17.6	Class
12	16.172	-22.7	Class
13	16.492	-24.1	Class
14	16.876	-25.8	Class
15	16.882	-25.8	Class
16	16.978	-26.2	Class
17	17.615	-29.0	Class
18	17.827	-29.9	Class
19	17.849	-30.0	Class
20	18.016	-30.7	Class

Delay profiles by 3GPP^[3]-i

sp	se 1, eed m/h	Case 2, Case 3, speed 3 km/h speed 120 km/h		speed 120		speed 120 speed 3 speed 50		d 50	Cas speed km	-	
Rela	Relati	Relative	Relati	Relati	Relativ	Relati	Relati	Relati	Relati	Relati	Relati
tive	ve	Delay	ve	ve	е	ve	ve	ve	ve	ve	ve
Dela	mean	[ns]	mean	Delay	mean	Delay	mean	Delay	mean	Delay	mean
У	Power		Power	[ns]	Power	[ns]	Powe	[ns]	Powe	[ns]	Powe
[ns]	[dB]		[dB]		[dB]		r		r [dB]		r
							[dB]				[dB]
0	0	0	0	0	0	0	0	0	0	0	0
976	-10	976	0	260	-3	976	0	976	-10	260	-3
		20000	0	521	-6					521	-6
				781	-9					781	-9

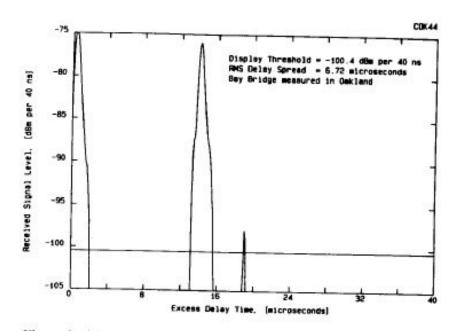
- All taps have classical Doppler spectrum.

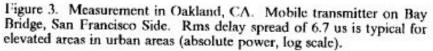
Delay profiles by 3GPP^[3]-ii

Case 7, speed 50 km/h						
Relative Delay						
[ns]						
0	0.0	-				
260	-4.3	-				
1040	-6.6	-				
4690	-2.0	0.0				
7290	-7.0	-0.3				
14580	-7.5	-0.9				

- All taps have classical Doppler spectrum.

Delay profiles by 3GPP2^[4]-i


Channel Model	Multi-path Model	# of Fingers	Speed (kmph)	Fading	Assignment Probability
Model A	Pedestrian A	1	3	Jakes	0.30
Model B	Pedestrian B	3	10	Jakes	0.30
Model C	Vehicular A	2	30	Jakes	0.20
Model D	Pedestrian A	1	120	Jakes	0.10
Model E	Single path	1	0, f _D =1.5 Hz	Rician Factor K = 10 dB	0.10


Delay profiles by 3GPP2^[4]-ii

Model	Finger 1 (dB)	Delay	Finger2 (dB)	Delay (Tc)	Finger 3 (dB)	Delay (Tc)	FURP ¹ (dB)
Ped-A	-0.06	0.0					- 18.8606
Ped-B	-1.64	0.0	-7.8	1.23	-11.7	2.83	- 10.9151
Veh-A	-0.9	0.0	-10.3	1.23			- 10.2759

- FURP: Fractional UnRecovered Power shall contribute to the interference of the finger demodulator outputs as an independent fader.

Another delay profile reported

- Rappaport, T.S.; Seidel, S.Y.; Singh, R., "900 MHz multipath propagation measurements for US digital cellular radiotelephone," Global Telecommunications Conference, 1989, and Exhibition. 'Communications Technology for the 1990s and Beyond'. GLOBECOM '89., IEEE, 27-30 Nov. 1989, Page(s): 84 -89 vol.1
- Worst profile case for typical operating locations
- RMS delay spread
 - Urban: 2-3 us
 - Hilly: 5-7 us

Concluding Remarks

- Delay spread is less than 10 us for most cases.
- But there are certainly cases where the maximum delay spread is longer than 10 us in both ITU and European COST models:
 - ITU model vehicular channel B,
 - COST 259 HT,
 - 3GPP model Cases 2 and 7.

Recommendations

- Explicit requirement for delay spread?
- Performance evaluation
 - Having multi-delay profiles is reasonable for exact performance evaluation
 - One profile needs to include taps having delay larger than 10 microseconds. → What performance does MBWA have with large delay spreads?

• ITU-R M.1225

- Although large delay spreads occur relatively infrequently, they can have a major impact on system performance.'
- To accurately evaluate the relative performance of candidate RTTs, it is desirable to model the variability of delay spread as well as the "worst case" locations where delay spread is relatively large.'

References

- 1. RECOMMENDATION ITU-R M.1225, "GUIDELINES FOR EVALUATION OF RADIO TRANSMISSION TECHNOLOGIES FOR IMT-2000," 1997.
- 2. 3GPP TR 25.943, "Deployment aspects," June 2002.
- 3. 3GPP TS 25.101, "UE Radio Transmission and Reception (FDD)," December 2002.
- 4. 3GPP2 TSG-C.R1002, "1xEV-DV Evaluation Methodology (V13.1)".