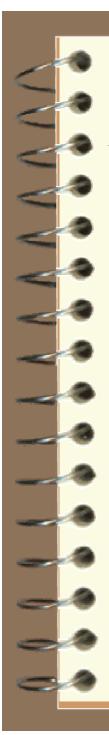

Project	IEEE 802.20 Working Group on Mobile Broadband Wireless Access < <u>http://grouper.ieee.org/groups/802/20/</u> >			
Title	Expectations on Spectral Efficiency, Throughput, and Other Performance Metrics			
Date Submitted	2004-03-01			
Source(s)	Joseph Cleveland	Phone: 972-761-7981 Email: <u>j.cleveland@samsung.com</u>		
	Anna Tee	Phone : 972-761-7437		
		Email : <u>a.tee@samsung.com</u>		
Re:	IEEE 802.20 WG on MBWA Call for Contributions: Session # 7 - March 15-19, 2004			
Abstract	This contribution summarizes various performance metrics, such as spectral efficiency and throughput, for various air interface technologies in the context of expected performance with a new air interface.			
Purpose	The purpose of the contribution is to addresses the question of how much performance improvement in spectral efficiency and throughput can be expected over current technologies.			
	technologies.	iey and unoughput can be expected over current		
Notice	This document has been prepared to as discussion and is not binding on the co	ssist the IEEE 802.20 Working Group. It is offered as a basis for ontributing individual(s) or organization(s). The material in this and content after further study. The contributor(s) reserve(s) the right		
Notice Release	This document has been prepared to as discussion and is not binding on the co document is subject to change in form to add, amend or withdraw material co The contributor grants a free, irrevocal contribution, and any modifications th the IEEE's name any IEEE Standards and at the IEEE's sole discretion to pe	ssist the IEEE 802.20 Working Group. It is offered as a basis for ontributing individual(s) or organization(s). The material in this and content after further study. The contributor(s) reserve(s) the right		

Contribution C802.20-04/49

Expectations on Spectral Efficiency, Throughput, and Other Performance Metrics

Joseph Cleveland Anna Tee


Topics

Next Generation Capability

- Improvement factors
- Order-of-magnitude cost reduction
- **Spectral Efficiency**

Latency

16.03.04

Improvement Factors

- Order of magnitude cost reduction
- "Ubiquitous" coverage
- User experience
 - Ease of use
 - Installation
 - Reliability

Cost Improvement: Goal of 10X

Factor: (Deployment + Operating)/Capacity

Deployment cost

Í

- System acquisition (H)
 - Capacity impact (H)
- Access Terminal cost (M)
- Site development (L)
 - Footprint
 - Power access
 - Government fees & civil engineering
 - Tower + antenna
- Backhaul access (L)
 - Sized to peak loading
 - FE/GE is not "free"
 - Wireless backhaul is unreliable
 - Wireless backhaul so far has not made impact
- Operating cost (L)
 - Commercial power
 - Maintenance
- 16.03.04 Site lease

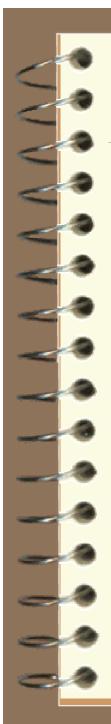
Cost Impact Example: 802.11

Cost of Access Terminal, Access Point

- Dropped by 80-90% since introduction
- Lower cost components
- Improved manufacturing efficiencies & volume
- Ease of installation

Impact of Standard

- Improved multi-user access experience
- 2-to-54 Mbps peak rates
- Proven protocol experience


Area 802.11 coverage cost >3X macro-cellular cost

The 802.11 standard itself had little impact on "cost" other than to provide an open, broadband, widely-accepted interface

16.03.04

í

創

Capacity Limit

Shannon limit

$$C = W \cdot \log_2\left(1 + \frac{S}{N}\right)$$

Fundamental constraint

- Independent of channel coding
- Independent of modulation
- Implementation margin ~ 0.5 dB
 - Turbo codes
 - Low density parity codes (LDPC)

16.03.04

Spectral Efficiency

Mean spectral efficiency (bits/sec/Hz)

$$\langle C \rangle = \left\langle \log_2 \left(1 + \frac{S(R_j, \sigma_k)}{N(R_j, \sigma_k)} \right) \right\rangle$$

- S = Receiver input signal power
 - = (Tx Pwr) x (Tx Ant Gain) x (Path Loss)
- N = Receiver input noise power
 - = $N_{PA} \times G_A \times L(R,S) \times B + (N_{TH} + I_o) \times NF \times B$
- L = Path loss per M.1225 vehicular model
 - \cong 40*log₁₀(R)-18log₁₀(H_B)+21log₁₀(F)+80+ σ

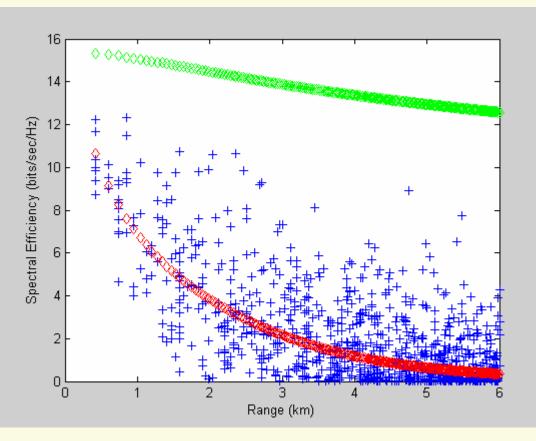
Parameters

- N_{PA} = PA noise floor = 60 dB below output
- N_{TH} = thermal noise = -174 dBm
 - = interference = 3 dB greater than N_{TH}
- NF = receiver noise figure = 8 dB
 - = noise bandwidth = 3.8 MHz
- W = channel bandwidth (5 MHz)
- R = range (km)
- H_B = BTS antenna height (m) = 25 meters
 - = frequency (MHz) \rightarrow 2100
- σ = log-normal distribution (std dev= 10 dB)
 - = implementation margin = 3 dB

R

F

Μ

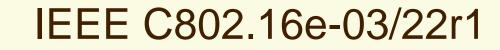

Spectral efficiency versus range in log-normal environment

Free-Space: <C>=13.7 b/s/Hz

Log-normal: <C>=2.1 b/s/Hz Cell = 6 km

Free-spaceLog-normal meanLog-normal scatter

16.03.04


Spectral Efficiency Recommendation

10X increase over current systems exceeds Shannon limit

1 b/s/Hz represents level of existing standards

The minimum spectral efficiency shall be 2 b/s/Hz on the forward link in a vehicular environment defined by ITU M.1225 for a cell range of 6 km.

16.03.04

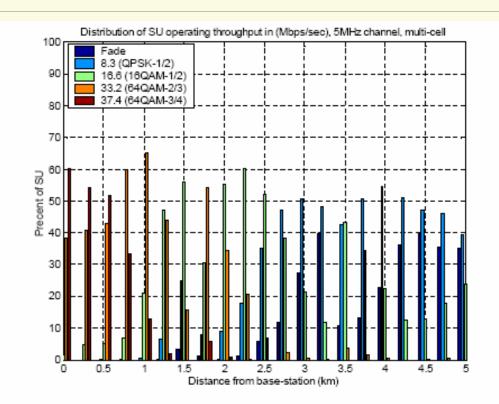
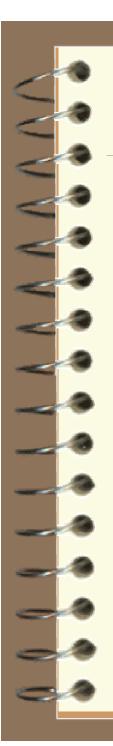


Figure 16: Distribution of SS throughput in the cell, vehicular (M.1225, optimized for better coverage)

The average capacity per sector is 1.35 Bit/sec/Hz, and for the entire cell it is 2.71 Bit/sec/Hz. Performance values below 0.1Bit/sec/Hz are marked in black as non-covered.

16.03.04

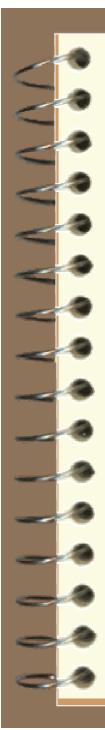


Current Performance

IEEE802.20 needs to be better than:

	W (MHz)	B (M	C (b/s/Hz)	
TD-CDMA (Rel. '99)	5	FWD	REV	FWD
Peak rate (no uplink)		5	-	
Peak rate (3:1 TDD split)		~3.4	~1.1	
Avg throughput per sector		1.5	~0.9	1.2
TD-CDMA (Rel. 5)	5	FWD	REV	
Sector throughput		1.9		1.52
EVDO	5	FWD	REV	
Peak		2.4	0.153	
Throughput		0.7		
Throughput @ 3 km/h, 1		1.2		0.96
Rayleigh path		1.2		0.00
Enhanced DO (proposed	5	FWD	REV	
Peak		~3	~1.2	
IEEE 802.16a (non-mobile	e)			
Peak (3:1 TDD split)	20	60	10	

16.03.04



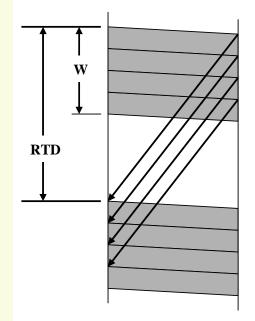
16.03.04

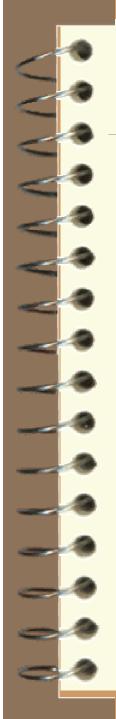
Latency Constraint

Purpose: Illustrate impact of PHY/MAC round-trip-delay on TCP throughput

Estimate throughput boundary for errorfree transmission

Latency Constraint

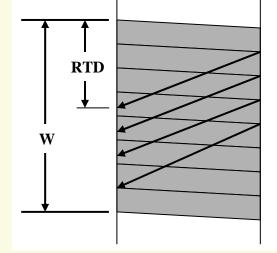

 Flow control where RTD is greater than the TCP window transmit time
 Maximum achievable TCP throughput:


$$R_{\max} = \frac{W * S}{RTD}$$

where

W= TCP window sizeS= TCP segment sizeRTD= Round Trip Delay

16.03.04

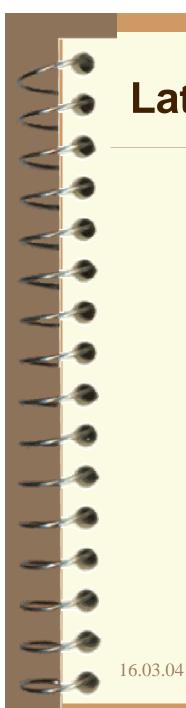


Latency Constraint

- Window flow control case where the round trip delay time (RTD) is less than the time required to transmit the window.
- Source is capable of transmitting at the full rate supported by the transmission medium (RM) and flow control is not active.
 - With error-free transmission on the RLP link, the round-trip delay is given by:

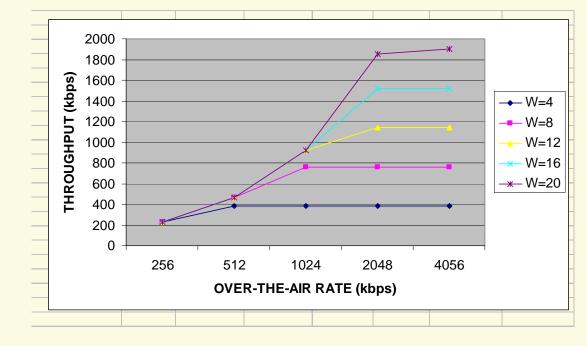
$$RTD = 2 \cdot \left(D_I + D_R \right)$$

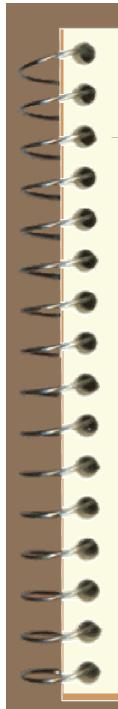
- DI = internet delay
- DR = one-way PHY/MAC delay

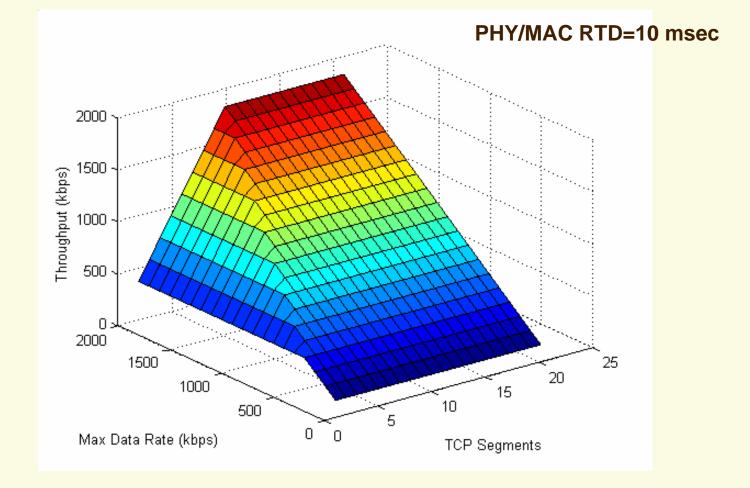

(2)

16.03.04

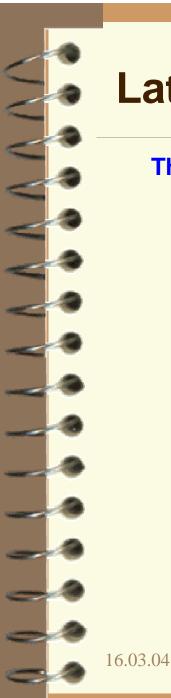
Í


C802.20-04/49

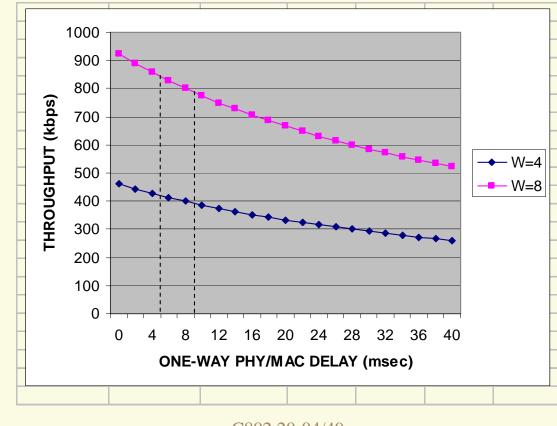

16


Latency Constraints

TCP Segment Size (bytes)	1500
Internet Delay (ms)	50
One-way radio link latency (ms)	10
RLP NAK guard (ms)	2
RLP delay	2
PPP header (bytes)	10
RLP header (bytes)	4
RLP frame size (bytes)	44



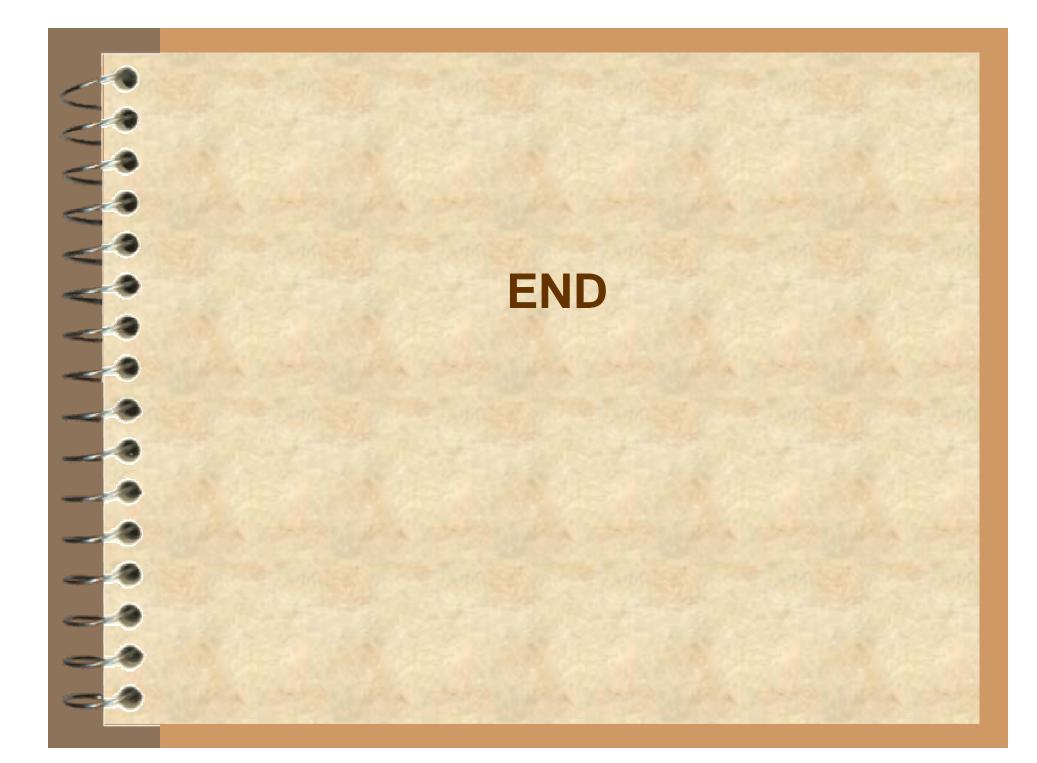
Throughput Tradeoffs



16.03.04

Latency Constraints

Throughput for TCP Window sizes of 4 and 8 frames versus one-way delay



Latency Recommendation

- Distinguish between "Latency" and "Round Trip Delay"
- Round trip delay for TCP traffic may adversely affect user throughput
- The MAC round trip delay should be less than 10% of the network delay

Since network round trip delay may be less than 100 msec, the round trip delay of MAC processing for TCP-based traffic shall be less than 10 msec.

16.03.04

