Project	IEEE 802.20 Working Group on Mobile Broadband Wireless Access < <u>http://grouper.ieee.org/groups/802/20/></u>		
Title	MBTDD 625k-MC* MODE Performance Report 1		
Date Submitted	2006-JAN-06	•	
Authors(s)	Radhakrishna Canchi KYOCERA Telecom.Research.Corp. 2480 N. First Street, Suite#280 San Jose, CA 95131	Voice: +1-408-952-4701 Fax: +1-408-954-8709 Email: <u>cradhak@ktrc-na.com</u>	
	Kazuhiro Murakami KYOCERA 2-1-1 Kagahara, Tsuzuki-ku, Yokohama, KANAGAWA 224-8502, JAPAN	Voice: +81-45-943-6130 Fax: +81-45-943-6175 Email: <u>kazuhiro.murakami.xm@kyocera.jp</u>	
	Minako Kithara KYOCERA 2-1-1 Kagahara, Tsuzuki-ku, Yokohama, KANAGAWA 224-8502, JAPAN	Voice: +81-45-943-6102 Fax: +81-45-943-6175 Email: <u>minako.kitahara.nf@kyocera.jp</u>	
Re:	MBWA Call for Proposal		
Abstract	This document presents the Technology Performance and Evaluation Criteria Report 1 of the Technology Proposal MBTDD 625k-MC [*] (BEST-WINE) for IEEE 802, 20 MBWA		
Purpose	To discuss and Adopt MBTDD 625k-MC [*] (BEST-WINE) for Draft Specifications of IEEE802.20 MBWA		
Notice	This document has been prepared to assist the IEEE 802.20 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.		
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.20.		
Patent Policy	The contributor is familiar with IEEE patent policy, as outlined in <u>Section 6.3 of the IEEE-SA Standards</u> <u>Board Operations Manual <<u>http://standards.ieee.org/guides/opman/sect6.html#6.3</u>> and in <i>Understanding</i> <i>Patent Issues During IEEE Standards Development</i> <<u>http://standards.ieee.org/board/pat/guide.html</u>>.</u>		

^{* 625}k-MC(625kHz625kiloHertz-spaced MultiCarrier) is Previously known as BEST-WINE: BEST-WINE: Broadband MobilE SpaTial Wireless InterNet AccEss

⁶²⁵k-MC(625kHz625kiloHertz-spaced MultiCarrier) is Previously known as BEST-WINE: BEST-WINE: Broadband MobilE SpaTial Wireless InterNet AccEss

²₃ 1 <u>Executive Summary</u>

4	This document MBTDD 625kHz MC Mode Performance Report 1 reports the
5	performance of the 625k-MC(BEST-WINE) based on the evaluation methodology
6	defined in <i>IEEE802.20 Evaluation Criteria</i> document [5]. The channel models of
7	IEEE802.20 Channel Model document [4] were used.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

1	Table	of (Contents
2	1 Ex	ecut	ive Summary3
3	2 Re	fere	nces8
4	3 De	finiti	ons9
5	4 Ab	brev	viations and acronyms10
6	5 Int	rodu	lction12
7	5.1	Pur	pose of This Report12
8	5.2	Key	/ Technologies12
9	5.3	Sys	stem Model
10	5.	3.1	Cell layout: 19BS / 3sector
11	5.	3.2	Base Station & Mobile Station (User Terminals)13
12	5.4	RF	parameters14
13	5.	4.1	RF Parameters
14	5.	4.2	Out-of-band emission
15 16	5.5	MB info	TDD 625k-MC (BEST-WINE) System's PHY and MAC Layer
17 18	5.	5.1	MBTDD 625k-MC (BEST-WINE) System Basic PHY/MAC layer parameters Channel structure
19	5.	5.2	MBTDD 625k-MC (BEST-WINE) Modulation classes17
20	5.6	Linl	k Budget
21	5.	6.1	Suburban Macro Test Environment – Pedestrian B (3KMPH)18
22	5.	6.2	Suburban Macro Test Environment Vehicular B (120 KMPH)19
23	6 Sir	nula	tion environment20
24	6.1	Linl	k – System Interface
25	6.2	Linl	k level simulation
26	6.	2.1	Link Level simulation Parameters
27	6.	2.2	Channel models used in Link Level Simulations20
28	6.3	Sys	stem level simulation environment21
29	6.	3.1	System level simulation features21
30	6.	3.2	System level simulation parameters21
31	6.	3.3	System level simulation channel mode
32	6.	3.4	Traffic Model System Level Simulation
33	7 Sir	nula	tion Results22
34	7.1	Linl	k level simulation

1	7.1.1	FER vs. SINR Performance	22
2	7.1.2	Throughput vs SINR Performance	24
3	7.2 Sy	stem level simulation calibration result	26
4	7.2.1	System level simulation calibration condition and parameters	26
5	7.3 Sy	stem Level Simulation Results	28
6	7.3.1	User Date Rate CDF	28
7	7.3.2	120km/h User Date Rate CDF	28
8	7.3.3	Number of users vs Base station Separation	30
9	7.3.4	Aggregated Throughput vs. Base station Separation	33
10	7.4 Fa	irness criteria	35
11	8 Simula	ations Results Summary	35
12	9 Practio	cal System Results	36
13			
14			

1	List of Figures	
2 3	Figure 5-1 Cell definition in the Cartesian coordination system and the numbering cells	g of . 13
4	Figure 5-2 Base station antenna pattern	. 13
5	Figure 5-3 UT positions	. 14
6	Figure 5-4a User Terminal mod 0	. 15
7	Figure 5-5 Base Station 8 carriers	. 16
8	Figure 5-6 Channel configuration in a block assignment of 2.5 MHz	. 17
9	Figure 7-1 Uplink (Vehicular B model) 120kmph	. 23
10	Figure 7-2 Downlink (Vehicular B model) 120kmph	. 23
11	Figure 7-3 Uplink (Pedestrian B model) 3kmph	. 24
12	Figure 7-4 Downlink (Pedestrian B model) 3kmph	. 24
13	Figure 7-5 Uplink (Vehicular B model)120kmph	. 25
14	Figure 7-6 Downlink (Vehicular B model) 120kmph	. 25
15	Figure 7-7 Uplink (Pedestrian B model) 3kmph	. 26
16	Figure 7-8 Downlink (Pedestrian B model) 3kmph	. 26
17	Figure 7-9 User Terminal Location Map for Deterministic calibration	. 27
18	Figure 7-10 CDF for C/I with users at fixed locations	. 28
19	Figure 7-11 120kmph User Date Rate CDF	. 29
20	Figure 7-12 3km/h CDF of throughput vs SINR	. 30
21	Figure 7-13 Contours of constant Minimum Service Level at 3Kmph -Downlink	. 31
22	Figure 7-14 Contours of constant Minimum Service Level at 120Kmph -Downlink.	. 31
23	Figure 7-15 Contours of constant minimum service level at 3Kmph - Uplink	. 32
24	Figure 7-16 Contours of constant minimum service level at 120Kmph – Uplink	. 33
25	Figure 7-17 Contours of constant minimum service level at 3kmph –Downlink	. 33
26	Figure 7-18 Contours of constant minimum service level at 120Kmph – Downlink.	. 34
27	Figure 7-19 Contours of constant minimum service level at 3kmph –Uplink	. 34
28	Figure 7-20 Contours of constant minimum service level at 120kmph -Uplink	. 35
29	Figure 9-1 25m-high Tower, User terminal and Sydney MAP	. 37
30	Figure 9-2: Downlink Date Rate Results	. 37
31		

1	
2	List of Tables
3	Table 5-1 BS and UT parameters14
4	Table 5-2 RF parameter table
5	Table 5-3 MBTDD 625k-MC (BEST-WINE) PHY/MAC Basic Parameters 16
6	Table 5-4 Modulation Classes and Maximum Data Rates 17
7	Table 5-5 Link Budget (3km/h) 18
8	Table 5-6 Link Budget (120km/h) 19
9	Table 6-1 Link level simulation channel models and associated spatial parameters 20
10	Table 6-2 Sub-path spatial parameters AoD and AoA offset
11	Table 6-3 System level simulation parameters 21
12	Table 6-4 Suburban Macro Environment Parameters 21
13	Table 7-1 Suburban Pedestrian B Case 35
14	Table 7-2 Suburban Vehicular B Case 35
15 16 17	Table 9-1 Date rate and spectrum efficiency test results of HC-SDMA in Australia . 37

-1	

6

7

8

9

10

2 2 References

3	[1]	ATIS-PP-0700004*-2005, High Capacity-Spatial Division Multiple Access (HC-
4		SDMA), September 2005

- a. <u>*The copyright of this document is owned by the Alliance for</u> <u>Telecommunications Industry Solutions. Any request to reproduce this</u> <u>document, or portion thereof, shall be directed to ATIS, 1200 G Street, NW,</u> Suite 500, Washington, DC 20005.
 - b. *For Electronic Downloads, Paper Copy or CD-ROM please follow the link <u>https://www.atis.org/atis/docstore/doc_display.asp?ID=3617</u>
- 11 [2] IEEE 802.20 PD-2.doc: Mobile Broadband Wireless Access Systems: Approved PAR
 12 (02/12/11):
- 13 [3] IEEE 802.20 PD-06r1.doc: IEEE 802.20 System Requirement Document (V 1.0)
- 14 [4] IEEE 802.20-PD-08.doc: IEEE 802.20 Channel Models (V 1.0)
- 15 [5] IEEE_802.20-PD-09.doc: IEEE 802.20 Evaluation Criteria (V 1.0)
- 16 [6] IEEE_802.20-PD-10.doc: IEEE 802.20 Technology Selection Process (V 1.0)
- 17 [7] X.P0011-001-D on 3gpp2 TSG-X specification
- 18
- 19
- 20

3 Definitions

As defined in the References [1],[2],[3]

3 4 5

4 Abbreviations and acronyms

	Access Assignment
	Adaptive Antenna Array
ACLPR	Adjacent Channel Leakage Power Ratio
ACS	Adjacent Channel Selectivity
AM	Acknowledged Mode
API	Application Programming Interface
ARQ	Automatic Repeat Request
BCH	Broadcast Channel
BS	Base Station
BSCC	Base Station Color Code
CA	Certificate Authority
CCH	Configuration Channel
СМ	Configuration Message
CoS	Class of Service
CR	Configuration Request
CRC	Cyclic Redundancy Check
EUD	End User Device
FACCH	Fast Associated Control Channel
FEC	Forward Error Control
FER	Frame Error Rate
GPS	Global Positioning System
HC-SDMA	High Capacity Spatial Division Multiple Access
i-HAP	Handshake and Authentication Protocol
IMSI	International Mobile Station Identifier
IPPR	Intermodulation Product Power Ratio
i-SEC	Secure Communications Protocol
i-TAP	Terminal Authentication Protocol
	Interconnection Wide Area Network
	Laver 2
	Layer 2 Tunneling Protocol
13	Layer 2 Turineing Trotocol
	La Connection Management
	L3 Connection Management and Control
	L2 Degistration Management
	Logical Link Control
	Ligniweight Directory Access Protocol
	LOW Noise Amplifier
LINS	L21P Network Server
LSB	Least Significant Bit
MAC	
MBWA	Mobile Broadband Wireless Access
MSB	
PA	Power Amplifier
PAR	Project Authorization Requirements
PCH	Paging Channel
PDCL	Packet Data Conversion Layer
PHY	Physical Layer
PID	Paging Identity
PPM	Parts Per Million
PPP	Point to Point Protocol
PPPoE	PPP over Ethernet
PSS	Packet Services Switch

QoS	Quality of Service
RA	Request Access
RACH	Random Access Channel
RSA	Rivest, Shamir, Adleman
RF	Radio Frequency
RLC	Radio Link Control
RM	Registration Management
RMU	RLC Message Unit
RRC	Radio Resource Control or Root Raised Cosine
RSSI	Received Signal Strength Indicator
SDMA	Space Division Multiple Access
SDU	Service Data Unit
SINR	Signal-to-Interference plus Noise Ratio
SN	Slot Number
SNR	Signal to Noise Ratio
ТСН	Traffic Channel
TDD	Time Division Duplex
TDMA	Time Division Multiple Access
TWAN	Transport Wide Area Network
UM	Unacknowledged Mode
UT	User Terminal

5 Introduction 1

- By this document, Kyocera team respectfully submits Technology Performance and 2
- 3 Evaluation Report 1 for the proposed TDD technology tilted MBTDD 625k-MC (BEST-
- WINE) (Broadband MobilE SpaTial Wireless InterNet AccEss), which is an enhanced air 4
- interface based on "ATIS-PP-0700004-2005, High Capacity-Spatial Division Multiple 5
- Access (HC-SDMA), (Pre Published American National Standard)"[1]. 6
- 7 This *Evaluation Report 1* report presents both the link and system level Technology
- Performance results obtained from simulations by following the methodologies specified in 8
- 9 the Evaluation Criteria Document [5] while using Suburban Macro Channel model and
- 10 related spatial parameters as defined in *Channel Model* document [4]. Both the link level and
- 11 system level performances are obtained at the User Terminal (UT) mobility speeds of 3kmph
- and 120kmph. Also this report provides link budget calculation for each of the channel 12
- 13 models

5.1 Purpose of This Report 14

15

19

20

16 This Evaluation Report 1 serves as the basis for comparing with other technology proposals.

5.2 Key Technologies 17

- 18 Key technologies of the MBTDD 625k-MC (BEST-WINE) system are
 - Adaptive Antenna Array Processing
 - Spatial Division Multiple Access
- 21 Link Adaptation with Modulation and Coding

5.3 System Model 22

23 5.3.1 Cell layout: 19BS / 3sector

- 24 The system layout consists of 19 cells with each cell split into 3 sectors as shown in Figure 25 5-1. Inter BS separation is 1.73 km and the cell radius is 1km.
- 26 Each cell is divided into 3 sectors, characterized by the antenna direction of each sector. The
- sectors are numbered counter-clock wise as 0, 1 and 2, respectively, where the respective 27
- antenna direction is 0: $\theta=0^{\circ}$, 1: $\theta=120^{\circ}$, 3: $\theta=240^{\circ}$; θ is the local polar angle of the cell. 28
- Following this convention, the first sector of the center cell is indexed (0, 0), while the last 29
- 30 sector is indexed (18,2). Mobiles are uniformly dropped in each sector excluding an area of 31
- radius 35 meters around the cell center. The unit of distance is meter. Each sector in each
- 32 base station employs antennas that has radiation pattern as shown in Figure 5-2.

- 9
- 10

Table 5-1 BS and UT parameters		
BS	Cell radius	1Km
	BS separation	1.73Km
	Tx/rx antenna elements	12
	Antenna separation	0.5λ
UT	Load users	86
	Distribution	Uniform in the 19BS area
	Rx. antenna	4
	Tx. antenna	1
	Antenna separation	0.5λ
	Sates	Connected state
		Not connected state

1

- 3
- 4

Figure 5-3 UT positions

5 5.4 <u>RF parameters</u>

6 **5.4.1 RF Parameters**

- 7 The RF parameters are shown in Table 5-2.
- 8 9

Table 5-2 RF parameter table

#	RF Parameter (TDD System)	Base Value 1 MHz Channel	2.5 MHz (TDD System)
1	Transmitter Power BS	43 dBm/MHz	+44 dBm
2	Transmitter Power MS	27 dBm	+27 dBm
3	Out of Band emission limits – BS and MS (emission measured in 1 MHz resolution bandwidth)	Attenuation of the transmit power P by: 43 +10 log(P) dB	-13 dBm

#	RF Parameter (TDD System)	Base Value 1 MHz Channel	2.5 MHz (TDD System)
4	ACLR - Attenuation of emissions into an adjacent channel (same Ch BW) – BS	43 dB	50.2 dB
5	ACLR - Attenuation of emissions into an adjacent channel (same Ch BW) – MS	36.8 dB	35.4 dB
6	Receiver noise figure BS	5 dB	5 dB
7	Receiver noise figure MS	10 dB	10 dB
8	Receiver reference sensitivity (to be proposed by each technology)	Specify at BER of 0.1%	See link budget
9	Receiver Selectivity BS	Mod 0 to 10 : 30 dB	30 dB
10	Receiver Selectivity MS	Mod 0 to 6 : 30 dB Mod 7 to 8 : 27 dB Mod 9 to 10 : 25 dB	30 dB 27 dB 25 dB
11	Receiver Blocking – BS (level of same technology blocking signal at frequency offset of 2 times Channel BW)	Mod 0 : -50.8 dBm Mod 7 : -36.8 dBm Mod 10 : -31.4 dBm	-50.8 dBm -36.8 dBm -31.4 dBm
12	Receiver Blocking – MS (level of same technology blocking signal at frequency offset of 2 times Channel BW)	Mod 0 : -58.5 dBm Mod 8 : -42.6 dBm Mod 10 : - 39.1 dBm	-58.5dBm -42.6dBm -39.1dBm

2 5.4.2 Out-of-band emission

3 The spectral shape of the transmitted modulated carrier are shown in Figure 5-4 and Figure

4 5-5 for single carrier and multiple carriers, respectively. It can be observed that the out-of-

5 band emission limit specified by the FCC is satisfied.

6

10 Channel structure

11 The basic PHY/MAC layer parameters are shown in Table 5-3.

12 Table 5-3 MBTDD 625k-MC (BEST-WINE) PHY/MAC Basic Parameters

Items	Specification	
Duplexing	TDD	
Mutiple Access		TDMA •SDMA
Single Carrier Bandwidth		625 kHz
Frame Length	5 ms	
Symbol Duration		2usec
Uplink Time Slot Slots		3
	Length	545 us

	Payload	182 symbols
Downlink Time Slot	Slots	3
	Length	1090 us
	Payload	494 symbols
Symbol rate		500 ksps

- 2 For MBTDD 625k-MC (BEST-WINE) TDD system, block assignment size of 2.5MHz has
- 3 been assumed. So, this block assignment accommodates 4 carriers of 625kHz bandwidth as
- 4 shown in Figure 5-6.
- 5

6 7

Figure 5-6 Channel configuration in a block assignment of 2.5 MHz

8 MBTDD 625k-MC (BEST-WINE) System employs Adaptive Antenna Array processing

9 using MMSE algorithm. Antenna array weights are calculated for the uplink transmissions

10 and the same weights are used for Downlink transmissions that follow.

11 5.5.2 MBTDD 625k-MC (BEST-WINE) Modulation classes

12 MBTDD 625k-MC (BEST-WINE) system supports 10 modulation classes, referred as

13 ModClass, which defines the modulation and coding scheme combination. There are 10

14 ModClasses as mentioned in the Table 5-4. The tiered multilevel modulation schemes

15 facilitate link adaptation. 8 different modulation schemes are incorporated, namely: BPSK,

16 QPSK, 8-PSK, 12QAM, 16QAM, 24QAM, 32QAM and 64QAM. The data rates per carrier

- 17 associated with these ModClasses are shown in the Table 5-4.
- 18 19

Table 5-4 Modulation Classes and Data Rates

		Down Link(Kbps)		Up Link(Kbps)	
ModClass	Modulation Method	Data Rate /Slot	Data Rate /Carrier	Data Rate /Slot	Data Rate /Carrier
0	BPSK	35	106	6	19
1	BPSK	50	149	13	38
2	QPSK	82	245	26	77
3	QPSK	126	379	43	130
4	8PSK	162	485	58	173
5	8PSK	198	595	72	216
6	12QAM	262	787	98	293
7	16QAM	307	922	115	346
8	24QAM	354	1061	133	398
9	32QAM	378	1133	142	427
10	64QAM	498	1493	190	571

20

22

23

21 The data rate with 4 carrier aggregation is as follows:

Down Link : 1493kbps x 4 Carrier aggregation = 5.97 Mbps

Up Link : 571kbps x 4 Carrier aggregation = 2.28 Mbps

1 5.6 Link Budget

- 2 Suburban macro-cell environment with Pedestrian B (3Kmph) and Vehicular B (120Kmph)
- 3 channel models are considered as mandated by [5]. The test environment parameters for the

4 two channel models are shown in Table 5-5 and Table 5-6 respectively.

5 5.6.1 Suburban Macro Test Environment – Pedestrian B (3KMPH)

- 6
- 7

Table	5-5	l ink	Budget	(3km/h)
Table	0-0		Duuget	

id/ii	Item	Downlink	Uplink
	Test environment	Suburban macro-	Suburban macro-
		cell	cell
	Operating frequency	1.9GHz	1.9GHz
	Test service	full buffer	full buffer
	Multipath channel class	CaseIII Pedestrian	CaseIII Pedestrian
		B)	B)
11/1d	(a0) Average transmitter power per traffic channel	Islot :32.3 dBm	Islot: 17.1 dBm
		2slot: 35.3 dBm	2slot: 20.1 dBm
		3slot: 37.0 dBm	3slot: 21.9 dBm
1d	(a1) Maximum transmitter power per traffic channel dBm	39	27
id	(a2) Maximum total transmitter power dBm/MHz	43	27
ii	(b) Cable, connector, and combiner losses (enumerate sources) [dB]	3	0
	Body Losses [dB]	0	3
ii	(c) Transmitter antenna gain [dBi]	17	0
id	(d1) Transmitter e.i.r.p. per traffic channel [dBm] =a1-b+c	53	27
id	(d2) Total transmitter e.i.r.p. =a2-b+c	57	27
	Penetration Loss (Ref: 3GPP2) 10 dB (Vehicular)	0	0
ii	(e) Receiver antenna gain [dBi]	0	17
ii	(f) Cable and connector losses [dB]	0	3
	Body Losses [dB]	3	0
ii	(g) Receiver noise figure [dB]	10	5
ii	(h) Thermal noise density dBm/Hz	-174	-174
	(H) (linear units) mW/Hz	3.98×10^{-18}	3.98×10^{-18}
id	(i) Receiver interference density (NOTE 1) [dBm/Hz]	-140.83	-159.06
	(I) (linear units) [mW/Hz]	8.25×10^{-15}	$1.24 \times {}^{-16}$
id	(j) Total effective noise plus interference density [dBm/Hz]	-140.81	-158.64
	$= 10 \log (10((g+h)/10) + I)$		
Ι	(k) Information rate (10 log (Rb)) [dB(Hz)] @mod0	53.98	53.98
Id	(l) Required Eb/(N0 + I0) @mod0	1.81	4.01
Id	CNR@BER0.1%point @mod0	-1.2	1.0
Id	(m) Receiver sensitivity = $(j + k + l)$ @mod0	-85.03	-100.06
id	(n) Hand-off gain[dB]	2	2
Id	(o) Explicit diversity gain [dB]	6	0
Id	(o') Other gain [dB]	21.6	10.8
Id	(p) Log-normal fade margin [dB]	10.4	10.4
Id	(q) Maximum path loss = $\{d1-m+(e-f)+o+n+o'-p\}$ [dB] @mod0	154.23	144.06
id	(r) Maximum range @mod0	3209.51	1643.95

5.6.2 Suburban Macro Test Environment Vehicular B (120 KMPH)

3 4

2

Table 5-6 Link Budget (120km/h)

id/ii	Item	Downlink	Uplink
	Test environment	Suburban macro-	Suburban macro-
		cell	cell
	Operating frequency	1.9GHz	1.9GHz
	Test service	full buffer	full buffer
	Multipath channel class	CaseIV Vehicular B	Case IV Vehicular B
ii/id	(a0) Average transmitter power per traffic channel	1slot: 32.3dBm	1slot: 17.1 dBm
		2slot: 35.3 dBm	2slot: 20.1 dBm
		3slot: 37.0dBm	3slot: 21.9dBm
id	(a1) Maximum transmitter power per traffic channel dBm	39.0	27
id	(a2) Maximum total transmitter power dBm/MHz	43	27
ii	(b) Cable, connector, and combiner losses (enumerate sources) [dB]	3	0
	Body Losses [dB]	0	3
ii	(c) Transmitter antenna gain [dBi]	17	0
id	(d1)Transmitter e.i.r.p. per traffic channel [dBm]=a1-b+c	53	27
id	(d2) Total transmitter e.i.r.p =a2-b+c	57	27
	Penetration Loss (Ref: 3GPP2) 10 dB (Vehicular)	10	10
ii	(e) Receiver antenna gain [dBi]	0	17
ii	(f) Cable and connector losses [dB]	0	3
	Body Losses [dB]	3	0
ii	(g) Receiver noise figure [dB]	10	5
ii	(h) Thermal noise density dBm/Hz	-174	-174
	(H) (linear units) mW/Hz	3.98×10^{-18}	3.98×10^{-18}
id	(i) Receiver interference density (NOTE 1) [dBm/Hz]	-141.97	-165.31
	(I) (linear units) [mW/Hz]	6.35×10^{-15}	2.94×10^{-17}
id	(j) Total effective noise plus interference density [dBm/Hz] = $10 \log (10((g + h)/10) + I)$	-141.94	-163.76
;;	$\frac{10 \log (10((g + H)/10) + 1)}{(k) \ln (m + 1) \log (Ph)) [dP(Ha)]} @mod0$	52.08	52.08
n id	(k) information rate (10 log (k0)) $[dD(112)]$ (amode)	6.21	5.01
Id	(1) Required Ed/(100 + 10) @mode	3.2	2.0
Id	(m) Receiver consistivity = $(i + k + 1)$ (mod)	9.2 81.75	104.78
id id	(iii) Receiver sensitivity $= (1 + K + 1)$ (allow)	-01.75	-104.78
Id	(a) Explicit diversity gain [dB]	3.7	0
Id	(o') Other gain [dB]	18.7	10.8
Id	(n) Log-normal fade margin [dB]	10.4	10.4
Id	q)Maximumpathloss $\{d1-m+(e-f)+o+n+o'-p\}dB@mod0$	135.75	138.18
id	(r) Maximum range @mod0	952.07	1116.78

6 Simulation environment 1

6.1 Link – System Interface 2

- 3 The simulations were divided into two steps, link level simulation and system level
- simulation. The SINR versus FER characteristic were obtained by the link level simulation 4
- 5 for all the modulation classes. Based on this link level simulation results, system (network)
- level simulations were carried out to obtain the performance of MBTDD 625k-MC (BEST-6
- WINE) air interface in the defined suburban macro radio test environment. 7

6.2 Link level simulation 8

9 6.2.1 Link Level simulation Parameters

- TDD /TDMA system 10 •
- 3 timeslot structure 11 •
- 12 Number of BS antenna: 12 •
- 13 Number of UT antenna: 4 •
- 14 Antennas used for transmission: 1
- 15 Antennas used for receiving: 4 or 1 -
- Adaptive Array Antenna Algorithm: MMSE 16 •
- 17 Equalizer: Receiver equalization is used. •

6.2.2 Channel models used in Link Level Simulations 18

- 19 The channel models used are as specified in [4]. The channel model and the associated spatial parameters are summarized in Table 6-1. The subpath spatial parameters are shown in Table 20 6-2.
- 21
- 22 23

Table 6-1 Link level simulation channel models and associated spatial parameters

Models		case-iii case-iv			
PDP		Pedestrian-B (Phase I)		Vehicular-B (Phase I)	
Number of Paths		6		6	
5		0	0	-2.5	0
ve we	(su	-0.9	200	0	300
B)	N (C)	-4.9	800	-12.8	8900
ela h J	ilar	-8.0	1200	-10.0	12900
R Þat	De	-7.8	2300	-25.2	17100
I	[-23.9	3700	-16.0	20000
Speed (km/h)		3		120	
	Topology	0.5λ		0.5λ	
bile	PAS	RMS angle spread of 35 degrees per path with a Laplacian distribution		RMS angle spread of 35 degrees per path with a Laplacian distribution	
Mc Sta	DoT (degrees)	-22.5		22.5	
	AoA (degrees)	67.5 (all paths)		67.5 (all paths)	
uo	Topology	0.5λ-spacing			
e Stati	PAS	Laplacian distri	Laplacian distribution with RMS angle spread of 2 degrees per path depending on AoA/AoD		
Bas	AoD/AoA (degrees)	50° for 2° RMS angle spread per path 20° for 5° RMS angle spread per path			pread per path

2

Table 6-2 Sub-path spatial parameters AoD and AoA offset

Sub-path # (m)	Offset for a 2 deg AS at BS	Offset for a 35 deg AS at MS
	(Macrocell)	$\Delta_{n,m,AoA}$ (degrees)
	$\Delta_{n,m,AoD}$ (degrees)	
1, 2	± 0.0894	± 1.5649
3, 4	± 0.2826	± 4.9447
5,6	± 0.4984	± 8.7224
7, 8	± 0.7431	± 13.0045
9, 10	± 1.0257	± 17.9492
11, 12	± 1.3594	± 23.7899
13, 14	± 1.7688	± 30.9538
15, 16	± 2.2961	± 40.1824
17, 18	± 3.0389	± 53.1816
19, 20	± 4.3101	± 75.4274

3

4 6.3 System level simulation environment

5 6.3.1 System level simulation features

- 6 TDD system
- 7 3 timeslot structure
- 8 Spatial Division multiple Access Channels (Max. 4)
- 9 Power control
- 10 Link adaptation
- 11

12 **6.3.2** System level simulation parameters

13

Table 6-3 System level simulation parameters

BS antenna	Number of antennas	12
	Antenna separation	0.5 λ
UT antenna	Number of antennas	4
	Antenna separation	0.5 λ
Layout	•	19BS with 3sector each
max Tx power at BS		39dBm/12ant
max Tx power at UT		27dBm
BS antenna gain		17dBi
UT antenna gain		0dBi
BS NF		5dB
UT NF		10dB
Temperature		15°C
BS cable loss		3dB
UT body loss		3dB
Simulation bandwidth		2.5MHz (4 carriers)
		(1 carrier=625 kHz)

Table 6-4 Suburban Macro Environment Parameters

14

15 **6.3.3 System level simulation channel mode**

Channel Scenario	Suburban Macro
Number of paths (<i>N</i>)	6
Number of sub-paths (<i>M</i>) per-path	20
Mean AS at BS	$E[\sigma_{AS}] = 5^0$
AS at BS as a lognormal RV	$\mu_{AS} = 0.69$
$\sigma_{AS} = 10^{\wedge} \left(\varepsilon_{AS} x + \mu_{AS} \right), x \sim \eta(0, 1)$	$\varepsilon_{AS} = 0.13$
$r_{AS} = \sigma_{AoD} / \sigma_{AS}$	1.2
Per-path AS at BS (Fixed)	2^{0}
BS per-path AoD Distribution standard	$\eta(0, \sigma_{AoD}^2)$ where
distribution	$\sigma_{AoD} = r_{AS} \sigma_{AS}$
Mean AS at MS	$E[\sigma_{AS, MS}] = 68^0$
Per-path AS at MS (fixed)	35 ⁰
MS Per-path AoA Distribution	$\eta(0,\sigma_{AoA}^2(\Pr))$
Delay spread as a lognormal RV	$\mu_{DS} = -6.80$
$\sigma_{DS} = 10^{h} \left(\varepsilon_{DS} x + \mu_{DS} \right), x \sim \eta(0, 1)$	$\varepsilon_{DS} = 0.288$
Mean total RMS Delay Spread	$E[\sigma_{DS}] = 0.17 \ \mu s$
$r_{DS} = \sigma_{delays} / \sigma_{DS}$	1.4
Distribution for path delays	
Lognormal shadowing standard deviation	10dB
Pathloss model (dB), <i>d</i> is in meters	$31.5 + 35\log_{10}(d)$

1

3 6.3.4 Traffic Model System Level Simulation

4 The simulation was carried out by full-duplex mode (UL-DL) in the same run and by 5 assuming full buffers (infinite backlog) model. No ARQ is employed.

6 7 Simulation Results

7 7.1 Link level simulation

8 The following sections report the FER versus SINR performance and link level throughput9 curves for the 7 ModClasses in uplink and 8 ModClasses in downlink.

10 7.1.1 FER vs. SINR Performance

- 11 The FER vs. received SINR curves are plotted for the Pedestrian B and Vehicular B channels
- 12 for both uplink and downlink. It can be observed that, as expected, the FER worsens for
- 13 higher ModClass.

- 8 The throughput vs. received SINR are plotted in Figure 7-5 to Figure 7-8.
- 9

7 7.2 System level simulation calibration result

8 7.2.1 System level simulation calibration condition and parameters

- 9 Number of paths: 1
- 10 Environment: Suburban macro
- 11 Number of BS & MS antenna: 1

- 1 2 3
- Inter BS separation 2.5km
- 1 user/timeslot @sector
 - \circ user1 @ (-60, R/2) intimeslot1
 - \circ user2 @ (0,R/2) in timeslot2
 - \circ user3 @ (60, R) in timeslot3
- 5 6 7

System level simulation calibration results are presented below. The cdf of the C/I, when the users are located at fixed positions as shown in Figure 7-9

8 9

11 12

10

Figure 7-9 User Terminal Location Map for Deterministic calibration

4 7.3 System Level Simulation Results

5 7.3.1 User Date Rate CDF

1 2

3

6 In this section we present system level simulation results as per the output metrics suggested 7 by the *Evaluation Criteria* document [5]. In the following User Data rate CDFs are plotted.

8 7.3.2 120km/h User Date Rate CDF

9 The CDF of user data rate for uplink and downlink at 120 kmph is shown in Figure 7-11.

10 The blue line plots downlink throughput CDF and red line plots uplink throughput CDF.

Figure 7-11 120kmph User Date Rate CDF

3 7.3.2.1 3km/h Uplink and Downlink

The CDF of user data rate for uplink and downlink at 3 kmph is shown in Figure 7-12. The 4

5 blue line plots downlink throughput CDF and red line plots uplink throughput CDF.

2

Figure 7-12 3km/h CDF of throughput vs SINR

3 7.3.3 Number of users vs Base station Separation

4 The minimum service level is computed from simulation, by changing inter BS separation 5 and the number of load users.

6 In the measurement of minimum service level, the degradation due to the increase in the

number of load users is larger compared with the degradation due to the increase in basestation separation.

9 In the 120 km/h simulation [vehicular B], aggravation of frequency efficiency was seen

10 compared with 3 km/h [Pedestrian B].

11 **7.3.3.1 Downlink**

12 Figure 7-13 and Figure 7-14 plot the contour of constant downlink minimum service levels

13 for full buffer users per sector versus base station separation. 3 timeslot aggregations is

14 assumed for each carrier in each cell.

15 **7.3.3.1.1 3 Kmph**

3 **7.3.3.1.2 120 Kmph**

1 7.3.3.2 Uplink

- 2 Figure 7-15 and Figure 7-16 plot the contour of constant uplink minimum service levels for
- full buffer users per sector versus base station separation. 3 timeslot aggregations is assumed
 for each carrier in each cell.
- 4 for each carrier in each cell. 5
- 6

8

7 7.3.3.2.1 3 kmph

9 Figure 7-15 Contours of constant minimum service level at 3Kmph - Uplink

1 7.3.3.2.2 120 kmph

Figure 7-16 Contours of constant minimum service level at 120Kmph – Uplink

5 7.3.4 Aggregated Throughput vs. Base station Separation

9 Figure 7-17 Contours of constant minimum service level at 3kmph –Downlink

Countours of constant(120km/h-UL)

2 Figure 7-20 Contours of constant minimum service level at 120kmph -Uplink

3 7.4 Fairness criteria

4 The CDF of the normalized throughput with respect to average user throughput was 5 determined for a cell radius of 1km.

6

1

7

Table 7-1 Suburban Pedestrian B Case

Normalized throughput with respect to average user throughput	Uplink	Downlink
<0.1	0.001%	0.002%
<0.2	0.006%	0.013%
<0.5	0.823%	1.128%

8

9 10

Table 7-2 Suburban Vehicular B Case

11

Normalized throughput with	Uplink	Downlink
respect to average user		
throughput		
<0.1	0.003%	0.887%
<0.2	0.017%	1.738%
<0.5	1.257%	9.310%

12

13 8 Simulations Results Summary

- 14
- 15 Downlink average spectral efficiency =

1		Downlink aggr	egate total throughput in 57 sectors	11		
1		57 sectors \times (1	$\overline{3slot \times 1090 \mu \sec/5m \sec) \times 2.5MHz}$	12		
2						
3	Uplink average spectral efficiency =					
Λ		Uplink aggre	gate total throughput in 57 sectors	11		
7		57 sectors ×	$(3slot \times 545 \mu sec/5m sec) \times 2.5MHz$	12		
5						
6						
7	*Downlink time slot duration: 1090 μ sec, Downlink time slot duration: 545 μ sec					
8	*timeframe duration : 5msec					
9						
10	[1	-		
	Spectral Efficiency	@pedestrian B	Spectral Efficiency @Vehicular B			
				1		

	Spectral Efficiency @pedestrian B	Spectral Efficiency @Vehicular B
Uplink	3.018	2.479
Downlink	4.063	1.699

11 9 Practical System Results

The proposed MBTDD 625k-MC (BEST-WINE)'s base system HC-SDMA [1] has been
 implemented and tested in some countries. The section illustrates the performance results
 using spatial channels delivering high spectrum efficiency in Australia.

15 HC-SDMA [1] implemented spatial channel testing on Nov 7th 2003 at North Sydney (North 16 ride). Base station had 12 dipole antennas on a 25m high tower and user terminals were of PCMCIA type as shown in Figure 9-1. Total 5MHz bandwidth (625kHz x 8Carrier) was used 17 18 for performance testing. The base station performs 8 carrier communications, including BCH, 19 and 3 spatial channels simultaneously. User terminal needs to use 625kHz bandwidths for 1Mbps communication. Therefore, base station delivered the following data rates to a total of 20 21 24 (3×8) users simultaneously. 22 23 User terminal data rate without BCH : Uplink 1,061 kbps 24 Downlink 346 kbps 25 User terminal data rate with BCH Uplink 707 kbps -26 Downlink 231 kbps

So, Aggregate data rate $(1,061 \text{ kbps} + 346 \text{ kbps}) \times 7 \text{ Carrier} \times 3 \text{ Spatial}$

- 29 + $(707 \text{ kbps} + 231 \text{ kbps}) \times 1 \text{ Carrier} \times 3 \text{ Spatial} \cong 32.4 \text{ Mbps}.$
- 30

27

31 HC-SDMA [1] system could deliver aggregate data rate \approx 32.4 Mbps. The corresponding

- maximum spectrum efficiency that is achieved in 5MHz band is $32.4 \text{ Mbps} / 5 \text{ MHz} \cong 6.5$ bit/sec/Hz/cell.
- 33 34
- 34 35

Figure 9-1 25m-high Tower, User terminal and Sydney MAP

2 The test result for 24 terminals communication achieved a total of 29.6Mbps. Figure 9-2 3 show throughput result for downlink performance. The logical maximum data rate is

4 32.4Mbps as already stated. From this result, spatial throughput efficiency is computed as

5 29.6Mbps / 32.4 Mbps $\cong 0.913 \rightarrow 91.3\%$.

6 Furthermore, the test achieved spectrum efficiency is computed as 29.6 Mbps / 5 MHz \cong 5.9 bit/sec/Hz/cell.

8

11

9 10

Figure 9-2: Downlink Date Rate Results

12 13
 Table 9-1 Date rate and spectrum efficiency test results of HC-SDMA in

 Australia

Downlink	942kbps	22.6Mbps	6.8
Uplink	290kbps	7.0Mbps	4.2
Total	1,232kbps	29.6Mbps	5.9