Project	IEEE 802.20 Working Group on Mobile Broadband Wireless Access				
	< <u>http://grouper.ieee.org/groups/802/20/</u> >				
Title	MBTDD 625k-MC* MODE Perform	ance Report 2			
Date	2006-JAN-13				
Submitted					
Authors(s)	Radhakrishna Canchi	Voice: +1-408-952-4701			
	KYOCERA Telecom.Research.Corp.	Fax: +1-408-954-8709			
	San Jose, CA 95131	Email: <u>cradhak@ktrc-na.com</u>			
	Kazuhiro Murakami	Voice: +81-45-943-6130			
	ATOLEKA 2-1-1 Kagahara Tsuzuki-ku	Fax: $+81_45_943_6175$			
	Yokohama, KANAGAWA 224-8502.	Email: kazuhiro murakami xm@kyocera in			
	JAPAN	Eman: <u>kuzumo.marakum.km@kyoeera.jp</u>			
	Minako Kithara	Voice: +81-45-943-6102			
	KYUCERA 2-1-1 Kagabara Tsuzuki-ku	Fax: +81-45-943-6175			
	Yokohama, KANAGAWA 224-8502, JAPAN	Email: minako.kitahara.nf@kyocera.jp			
Re:	MBWA Call for Proposal				
Abstract	This document presents the Technolog of the Technology Proposal MBTDD 6	y Performance and Evaluation Criteria Report 2 25k-MC [*] (BEST-WINE) for IEEE 802. 20 MBWA			
Purpose	To discuss and Adopt MBTDD 625k-N	MC for Draft Specifications of IEEE802.20 MBWA			
Notice	This document has been prepared to assist the IEEE 802.20 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.				
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.20.				
Patent Policy	The contributor is familiar with IEEE patent po Board Operations Manual < <u>http://standards.iee</u> Patent Issues During IEEE Standards Develop	blicy, as outlined in <u>Section 6.3 of the IEEE-SA Standards</u> e.org/guides/opman/sect6.html#6.3> and in <i>Understanding</i> ment < <u>http://standards.ieee.org/board/pat/guide.html</u> >.			

^{* 625}k-MC (625kiloHertz-spaced MultiCarrier) is previously known as BEST-WINE: Broadband MobilE SpaTial Wireless InterNet AccEss

^{* 625}k-MC (625kiloHertz-spaced MultiCarrier) is Previously known as BEST-WINE: Broadband MobilE SpaTial Wireless InterNet AccEss

²₃ 1 <u>Executive Summary</u>

4	This document MBTDD 625kHz MC Mode Performance Report 2 reports the
5	performance of the 625k-MC(BEST-WINE) based on the evaluation methodology
6	defined in IEEE802.20 Evaluation Criteria document [5]. The channel models of
7	IEEE802.20 Channel Model document [4] were used.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	

1	Table of Contents
2	1 Executive Summary
3	2 References7
4	3 Definitions8
5	4 Abbreviations and acronyms9
6	5 Introduction11
7	5.1 Purpose of This Report11
8	5.2 Key Technologies11
9	5.3 System Model11
10	5.3.1 Cell layout: 19BS / 3sector11
11	5.3.2 Channel models
10	
12	6 Link Level Simulations
13	6.1 3 km/hr Pedestrian A13
14	6.1.1 Uplink
15	6.1.2 Downlink
16	6.2 30km/hr Pedestrian A15
17	6.2.1 Uplink15
18	6.2.2 Downlink
19	6.3 120 km/hr Pedestrian A17
20	6.3.1 Uplink
21	6.3.2 Downlink
22	6.4 30 km/hr Vehicular A19
23	6.4.1 Uplink
24	6.4.2 Downlink
25	6.5 120 km/hr Vehicular A21
26	6.5.1 Uplink
27	6.5.2 Downlink
28	6.6 250 km/hr Vehicular A22
29	6.6.1 Uplink
30	6.6.2 Downlink
31	6.7 3 km/hr Pedestrian B24
32	6.7.1 Uplink24
33	6.7.2 Downlink
34	6.8 30 km/hr Vehicular B

1	6.8.1	Uplink	26
2	6.8.2	Downlink	27
3	6.9 120) km/hr Vehicular B	
4	6.9.1	Uplink	
5	6.9.2	Downlink	
6	6.10 250) km/hr Vehicular B	29
7	6.10.1	l Uplink	29
8	6.10.2	2 Downlink	
9	7 Syster	n Level Simulations	31
10	7.1 Tra	Iffic model Performance	31
11	7.1.1	Traffic Model Calibration	31
12	7.1.2	VoIP Performance	
13	7.1.3	VoIP and HTTP user performance	39
14	7.1.4	FTP And HTTP	40
15	7.1.5	TCP – HTTP	41
16	7.2 Tra	affic mix	42
17	7.3 Mo	bility Model	45
18	7.3.1	Handover procedure	45
19	7.3.2	Mobility direction	45
20	7.3.3	Handover distance	46
21	7.3.4	Handover Delay	
22	7.4 Ov	erhead Channels	50
23	7.4.1	PCH Transmission	50
24 25	8 Practio	cal System Results	52

1	List of Tables
2	Table 5-1 Link level simulation channel models and associated spatial parameters 12
3	Table 5-2 Sub-path spatial parameters AoD and AoA offset13
4	Table 7-1 Traffic model parameters 31
5	Table 7-2 Traffic mix: percentage of different Traffic Types42
6	Table 7-3 System level simulation parameters43
7	Table 7-4 Suburban macro channel mix43
8	Table 7-5 Urban micro channel mix43
9	Table 8-1 Date rate and spectrum efficiency test results 54
10	

2

3

4

2 <u>References</u>

[1] ATIS-PP-0700004*-2005, High Capacity-Spatial Division Multiple Access (HC-SDMA), September 2005

5 a. *The copyright of this document is owned by the Alliance for Telecommunications Industry Solutions. Any request to reproduce this 6 document, or portion thereof, shall be directed to ATIS, 1200 G Street, NW, 7 Suite 500, Washington, DC 20005. 8 9 b. *For Electronic Downloads, Paper Copy or CD-ROM please follow the link 10 https://www.atis.org/atis/docstore/doc_display.asp?ID=3617 IEEE 802.20 PD-2.doc: Mobile Broadband Wireless Access Systems: Approved PAR 11 [2] 12 (02/12/11): 13 IEEE 802.20 PD-06r1.doc: IEEE 802.20 System Requirement Document (V 1.0) [3] 14 [4] IEEE 802.20-PD-08.doc: IEEE 802.20 Channel Models (V 1.0) 15 [5] IEEE 802.20-PD-09.doc: IEEE 802.20 Evaluation Criteria (V 1.0) 16 [6] IEEE 802.20-PD-10.doc: IEEE 802.20 Technology Selection Process (V 1.0) X.P0011-001-D on 3gpp2 TSG-X specification 17 [7] IEEE 802.20-06/04: MBFDD and MBTDD: Proposed Draft Air Interface 18 [8] Specification 19 20 [9] IEEE 802.20-05-77r1.doc: MBTDD 625k-MC Mode Revised Performance Report 1 21 22 23

1 **3** Definitions

As defined in the References [1],[2],[3]

4 Abbreviations and acronyms

AAA Adaptive Antenna Array ACLPR Adjacent Channel Leakage Power Ratio ACS Adjacent Channel Selectivity AM Acknowledged Mode API Application Programming Interface ARQ Automatic Repeat Request BCH Broadcast Channel BS Base Station BSCC Base Station Color Code CA Certificate Authority CCH Configuration Message CCA Configuration Request CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access I+HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Internodulation Product Power Ratio	AA	Access Assignment
ACLPR Adjacent Channel Leakage Power Ratio ACS Adjacent Channel Selectivity AM Acknowledged Mode API Application Programming Interface ARQ Automatic Repeat Request BCH Broadcast Channel BS Base Station BSSC Base Station Color Code CA Certificate Authority CCH Configuration Message CoS Class of Service CR Configuration Message CoS Class of Service CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access I+HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Intermodulation Product Power Ratio I-SEC Secure Communications Protocol IWAN Interconnec	AAA	Adaptive Antenna Array
ACS Adjacent Channel Selectivity AM Acknowledged Mode API Application Programming Interface ARQ Automatic Repeat Request BCH Broadcast Channel BS Base Station BSCC Base Station Color Code CA Certificate Authority CCH Configuration Channel CM Configuration Message CoS Class of Service CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access I-HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Internodulation Product Power Ratio I-SDMA High Capacity Spatial Division Multiple Access I-HAP Terminal Authentication Protocol IMSI International Mobile Station Identifier	ACLPR	Adjacent Channel Leakage Power Ratio
AM Acknowledged Mode API Application Programming Interface ARQ Automatic Repeat Request BCH Broadcast Channel BS Base Station BSCC Base Station Color Code CA Certificate Authority CCH Configuration Channel CM Configuration Ressage CoS Class of Service CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access I+HAP Handshake and Authentication Protocol IMSI Intermational Mobile Station Identifier IPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L3 MMC L3 Mobility Management L3 MMC L3 Mobility Management <td>ACS</td> <td>Adjacent Channel Selectivity</td>	ACS	Adjacent Channel Selectivity
API Application Programming Interface ARQ Automatic Repeat Request BCH Broacdast Channel BS Base Station BSCC Base Station Color Code CA Certificate Authority CCH Configuration Channel CM Configuration Message CoS Class of Service CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access I-HAP Handshake and Authentication Protocol IMSI Internodulation Product Power Ratio I-SDMA Ingthe Capacity Spatial Division Multiple Access I-HAP Handshake and Authentication Protocol IMSI Internodulation Product Power Ratio I-SEC Secure Communications Protocol IWAN Interconnection Wide Area Network </td <td>AM</td> <td>Acknowledged Mode</td>	AM	Acknowledged Mode
ARQ Automatic Repeat Request BCH Broadcast Channel BS Base Station BSCC Base Station Color Code CA Certificate Authority CCH Configuration Channel CM Configuration Message CoS Class of Service CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMSI Intermodulation Product Power Ratio I-SEC Secure Communications Protocol I-TAP Terminal Authentication Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 3 L3 CM L3 Connection Management L3 MMC L3 Mobility Management and Control L3 RM L3 Registratin Management <		Application Programming Interface
BCH Broadcast Channel BS Base Station BSCC Base Station Color Code CA Certificate Authority CCH Configuration Channel CM Configuration Message Cos Class of Service CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Intermodulation Protocol IMSI Internodulation Protocol IMAN Interconnection Wide Area Network L2 Layer 2 L3 CM L3 Connection Management L3 GM L3 Connection Management L3 RM L3 Registration Management L3 RM L3 Registration Management L3 RM L3 Registration Management	ARO	Automatic Repeat Request
BS Base Station BSCC Base Station Color Code CA Certificate Authority CCH Configuration Channel CM Configuration Message CosS Class of Service CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access I+HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Intermodulation Protocol I-TAP Terminal Authentication Protocol I-SEC Secure Communications Protocol I-TAP Layer 2	BCH	Broadcast Channel
BSCC Base Station Color Code CA Certificate Authority CCH Configuration Channel CM Configuration Message CoS Class of Service CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Internodulation Product Power Ratio i-SEC Secure Communications Protocol i-TAP Terminal Authentication Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 3 L3 GM L3 Connection Management L3 MMC L3 Mobility Management and Control L3 RAM L3 Registration Management LLC Logical Link Control LBAP Lightweight Directory Access Protocol LFSR Linear Feedback Shift Register LNA Low Noise Ampliffer LNA	BS	Base Station
Dase Dase studin Code CA Certificate Authority CCH Configuration Channel CM Configuration Request CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Intermodulation Protocol IMSI Internonection Wide Area Network L2 Layer 2 L2TP Layer 2 L3 CM L3 Connection Management L3 MMC L3 Robility Management and Control L3 RM L3 Registration Management L3 RM L3 Registration Management L3 RM L3 Registration Management LASR Layer 3 L3 RM L3 Registration Management LDAP Liphtweight Directory Access P	BSCC	Base Station Color Codo
CA Configuration Channel CM Configuration Message Cas Class of Service CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMS1 Intermational Mobile Station Identifier IPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 2 L3 CM L3 Connection Management L3 MMC L3 Registration Management L3 MMC L3 Registration Management LBAP Linear Feedback Shift Register LNA Low Noise Amplifier LSB Least Significant Bit MAC Medium Access Control MBSB Mosil Significa	0000	
Configuration Message CoS Class of Service CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access I+HAP Handshake and Authentication Protocol IMSI Intermodulation Product Power Ratio I-SEC Secure Communications Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 2 L2TP Layer 3 L3 Connection Management LC L3 RM L3 Registration Management LLC Logical Link Control LBAP Lightweight Directory Access Protocol LFSR Linear Feedback Shift Register LNA Low Noise Amplifier LNA Low Noise Amplifier LNA Low Noise Amplifier LNA Modie Broadband Wireless Access <td< td=""><td></td><td>Configuration Channel</td></td<>		Configuration Channel
Construction Configuration Request CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IIPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 3 L3 CM L3 Connection Management L3 CM L3 Connection Management LLC Logical Link Control L3 RM L3 Registration Management LLC Logical Link Control LPAP Lightweight Directory Access Protocol LFSR Linear Feedback Shift Register LNA Low Noise Amplifier MAC Medium Access Control MBWA <td>CM</td> <td>Configuration Mossage</td>	CM	Configuration Mossage
COS Class of Service CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMSI Intermational Mobile Station Identifier IPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol i-TAP Terminal Authentication Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 3 L3 Connection Management L3 CM L3 Connection Management L3 CM L3 Connection Management LAS CM L3 Registration Management LLC Logical Link Control LDAP Lightweight Directory Access Protocol LFSR Linear Feedback Shift Register LNA Low Noise Amplifier LNA Low		
CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access I-HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 2 L2TP Layer 3 L3 CM L3 Connection Management L3 RMMC L3 Registration Management L3 RM L3 Registration Management LBAP Lightweight Directory Access Protocol LFSR Linear Feedback Shift Register LNA Low Noise Amplifier LNS L2TP Network Server LSB Least Significant Bit MAC Medium Access Control MBWA Mobile Broadband Wireless Access MSB	CD	Configuration Request
CKC Cyclic Redultative Crieck EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 2 Tunneling Protocol L3 Layer 3 L3 COM L3 Connection Management L3 MMC L3 Mobility Management and Control L3 RM L3 Registration Management LLC Logical Link Control LFSR Linear Feedback Shift Register LNA Low Noise Amplifier LNA Low Noise Amplifier LNS L2TP Network Server LSB Least Significant Bit MAC Medium Access Control MBWA <t< td=""><td></td><td>Cullia Redundancy Check</td></t<>		Cullia Redundancy Check
EUD End Oser Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol ITAP Terminal Authentication Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 2 L2TP Layer 3 L3 CM L3 Connection Management L3 MMC L3 Mobility Management and Control L3 RM L3 Registration Management LLC Logical Link Control LPSR Linear Feedback Shift Register LNA Low Noise Amplifier LNA Low Noise Amplifier LNS L2TP Network Server LSB Least Significant Bit MAC Medium Access Control MBWA Mobile B		
PACCH Past Associated Control FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access I-HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol ITAP Terminal Authentication Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 3 L3 CM L3 Connection Management L3 MMC L3 Mobility Management and Control L3 RM L3 Registration Management LLC Logical Link Control LDAP Lightweight Directory Access Protocol LFSR Linear Feedback Shift Register LNA Low Noise Amplifier LNS L2TP Network Server LSB Least Significant Bit MAC Medium Access Control MBWA Mobile Broadband Wireless Access MSB Most Significant Bit <t< td=""><td></td><td>End User Device</td></t<>		End User Device
FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol ITAP Terminal Authentication Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 3 L3 Layer 3 L3 Layer 3 L3 RMM L3 Roplistration Management L3 MMC L3 Registration Management LLC Logical Link Control LDAP Linear Feedback Shift Register LNA Low Noise Amplifier LNA Low Noise Control MBWA Mobile Broadband Wireless Access MSB Most Significant Bit MAC Medium Access Control MBWA Mobile Broadband Wireless Access MSB Most Significant Bit PA Power Amplifier PAR Project Authorization Requir		Fast Associated Control Channel
Frame End Nate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol i-TAP Terminal Authentication Protocol IWAN Interconnection Wide Area Network L2 Layer 2 Layer 3 Layer 3 L3 CM L3 Connection Management L3 RMMC L3 Mobility Management and Control L3 RM L3 Registration Management LLC Logical Link Control LDAP Lightweight Directory Access Protocol LFSR Linear Feedback Shift Register LNA Low Noise Amplifier LNA Low Noise Control MAC Medium Access Control MBWA Mobile Broadband Wireless Access MSB Most Significant Bit PA Power Amplifier PAR Project Authorization Requirements PCH Paging Channel PDCL		Forward Effor Control
HC-SDMA High Capacity Spatial Division Multiple Access I+HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol ITAP Terminal Authentication Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 3 L3 CM L3 Connection Management L3 RMC L3 Molity Management and Control L3 RM L3 Registration Management LLC Logical Link Control LDAP Lightweight Directory Access Protocol LFSR Linear Feedback Shift Register LNA Low Noise Amplifier LNS L2TP Network Server LSB Least Significant Bit MAC Medium Access Control MBWA Mobile Broadband Wireless Access MSB Most Significant Bit PA Power Amplifier LNS Larper Authorization Requirements PCH Paging Channel PA Power Amplifier P		Clobal Desitioning System
HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMSI Intermational Mobile Station Identifier IPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol i-TAP Terminal Authentication Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 3 L3 CM L3 Connection Management L3 MMC L3 Mobility Management and Control L3 RM L3 Registration Management LLC Logical Link Control LPSR Linear Feedback Shift Register LNA Low Noise Amplifier LNS L2TP Network Server LSB Least Significant Bit MAC Medium Access Control MBWA Mobile Broadband Wireless Access MSB Most Significant Bit PA Power Amplifier PAR Project Authorization Requirements PCH Paging Channel PDCL Packet Data Conversion Layer PHY Physical Layer PID <td></td> <td>Giobal Positioning System</td>		Giobal Positioning System
ImpactHandshake and Additentication ProtocolIMSIInternational Mobile Station IdentifierIPPRInternational Mobile Station IdentifieriPPRInternodulation Product Power Ratioi-SECSecure Communications ProtocolIWANInterconnection Wide Area NetworkL2Layer 2L2TPLayer 3L3 CML3 Connection ManagementL3 MMCL3 Mobility Management and ControlL3 RML3 Registration ManagementLCLogical Link ControlLDAPLightweight Directory Access ProtocolLFSRLinear Feedback Shift RegisterLNALow Noise AmplifierLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAProject Authorization RequirementsPCLPacket Data Conversion LayerPHYPhysical LayerPHYPhysical LayerPDDPaging IdentityPPPOEPPPOEPPPOEPPPOEPPPOEPPPOEPPPOEPPPOE		High Capacity Spatial Division Multiple Access
IMSIInternational Mobile Station RefutiteIPPRIntermodulation Product Power Ratioi-SECSecure Communications Protocolii-TAPTerminal Authentication ProtocolIWANInterconnection Wide Area NetworkL2Layer 2L2TPLayer 2 Tunneling ProtocolL3Layer 3L3 CML3 Connection ManagementL3 MMCL3 Mobility Management and ControlL3 RML3 Registration ManagementLLCLogical Link ControlLDAPLightweight Directory Access ProtocolLFSRLinear Feedback Shift RegisterLNALow Noise AmplifierLNSL2TP Network ServerLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPARProject Authorization RequirementsPCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPPPoint to Point ProtocolPPPOEPPPOEPPPOEPPPOEPPPOEPPPOEPPPOEPPPOE		International Mahila Station Identifier
IPPR Interniodulation Protocol i-SEC Secure Communications Protocol ITAP Terminal Authentication Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 3 L3 CM L3 Connection Management L3 MMC L3 Mobility Management and Control L3 RM L3 Registration Management LC Logical Link Control LDAP Lightweight Directory Access Protocol LFSR Linear Feedback Shift Register LNA Low Noise Amplifier LNS L2TP Network Server LSB Least Significant Bit MAC Medium Access Control MBWA Mobile Broadband Wireless Access MSB Most Significant Bit PA Power Amplifier PAR Project Authorization Requirements PCL Packet Data Conversion Layer PHY Physical Layer PID Paging Identity PPP Point to Point Protocol PPPP Point to Point Protocol		International Mobile Station Identifier
I-SECSector Connition Rations Protocoli-TAPTerminal Authentication ProtocolIWANInterconnection Wide Area NetworkL2Layer 2L2TPLayer 2 Tunneling ProtocolL3Layer 3L3 CML3 Connection ManagementL3 MMCL3 Mobility Management and ControlL3 RML3 Registration ManagementLLCLogical Link ControlLDAPLightweight Directory Access ProtocolLFSRLinear Feedback Shift RegisterLNALow Noise AmplifierLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPARProject Authorization RequirementsPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPPPoint to Point ProtocolPPPOEPPP over Ethernet		Intermodulation Product Power Ratio
IPTAP Terminal Additentication Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 2 Tunneling Protocol L3 Layer 3 L3 CM L3 Connection Management L3 MMC L3 Mobility Management and Control L3 RM L3 Registration Management LC Logical Link Control LDAP Lightweight Directory Access Protocol LFSR Linear Feedback Shift Register LNA Low Noise Amplifier LNS L2TP Network Server LSB Least Significant Bit MAC Medium Access Control MBWA Mobile Broadband Wireless Access MSB Most Significant Bit PA Power Amplifier PAR Project Authorization Requirements PCH Paging Channel PDCL Packet Data Conversion Layer PHY Physical Layer PID Paging Identity PPP Point to Point Protocol PPPOE PPP Optor Portocol		Secure Communications Protocol
Interconnection whe Area NetworkL2Layer 2L2TPLayer 2 Tunneling ProtocolL3Layer 3L3 CML3 Connection ManagementL3 MMCL3 Mobility Management and ControlL3 RML3 Registration ManagementLLCLogical Link ControlLDAPLightweight Directory Access ProtocolLFSRLinear Feedback Shift RegisterLNALow Noise AmplifierLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPARProject Authorization RequirementsPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPPPoint to Point ProtocolPPPOEPPP over Ethernet		Interconnection Wide Area Network
L2Layer 2L2TPLayer 2 Tunneling ProtocolL3Layer 3L3 CML3 Connection ManagementL3 MMCL3 Mobility Management and ControlL3 RML3 Registration ManagementLLCLogical Link ControlLDAPLightweight Directory Access ProtocolLFSRLinear Feedback Shift RegisterLNALow Noise AmplifierLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPARProject Authorization RequirementsPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPPPoint to Point ProtocolPPPPPoint to Point ProtocolPPPOEPPP over Ethernet		
L21FLayer 2L3Layer 3L3 CML3 Connection ManagementL3 MMCL3 Mobility Management and ControlL3 RML3 Registration ManagementLLCLogical Link ControlLDAPLightweight Directory Access ProtocolLFSRLinear Feedback Shift RegisterLNALow Noise AmplifierLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPPPoint to Point ProtocolPPPPoint to Point ProtocolPPPPoyer Ethernet		Layer 2 Tuppeling Protocol
L3Layer 3L3CML3L3MMCL3MMCL3MMCL3Registration ManagementLCLogical Link ControlLDAPLightweight Directory Access ProtocolLFSRLinear Feedback Shift RegisterLNALow Noise AmplifierLSBL2TP Network ServerLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPARProject Authorization RequirementsPCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPPPoint to Point ProtocolPPPPoint to Point ProtocolPPPPoyer Ethernet		
L3 GML3 Connection ManagementL3 MMCL3 Mobility Management and ControlL3 RML3 Registration ManagementLLCLogical Link ControlLDAPLightweight Directory Access ProtocolLFSRLinear Feedback Shift RegisterLNALow Noise AmplifierLNSL2TP Network ServerLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPARProject Authorization RequirementsPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPPPoint to Point ProtocolPPPPoint to Point ProtocolPPPPoint to Point ProtocolPPPPOint to Point ProtocolPPPPDint to Point ProtocolPPPPDint to Point ProtocolPPPPDint to Point Protocol		Layer 5
LS MilloLS MilloLS MilloL3 RML3 Registration ManagementLLCLogical Link ControlLDAPLightweight Directory Access ProtocolLFSRLinear Feedback Shift RegisterLNALow Noise AmplifierLNSL2TP Network ServerLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPARProject Authorization RequirementsPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPPPoint to Point ProtocolPPPOEPPP over Ethernet		1.3 Mobility Management and Control
LS NMLS Registration ManagementLLCLogical Link ControlLDAPLightweight Directory Access ProtocolLFSRLinear Feedback Shift RegisterLNALow Noise AmplifierLNSL2TP Network ServerLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPARProject Authorization RequirementsPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPPPoint to Point ProtocolPPPOEPPP over Ethernet		1.3 Projection Management
LLCLogical Link ControlLDAPLightweight Directory Access ProtocolLFSRLinear Feedback Shift RegisterLNALow Noise AmplifierLNSL2TP Network ServerLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPARProject Authorization RequirementsPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPPPoint to Point ProtocolPPPOEPPP over Ethernet		
LDAPLightweight Directory Access ProtocolLFSRLinear Feedback Shift RegisterLNALow Noise AmplifierLNSL2TP Network ServerLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPARProject Authorization RequirementsPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPPPoint to Point ProtocolPPPPoint to Point ProtocolPPPPPP over Ethernet		Lightweight Directory Access Protocol
LPSKLinear Peeuback Shift RegisterLNALow Noise AmplifierLNSL2TP Network ServerLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPARProject Authorization RequirementsPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPPPoint to Point ProtocolPPPPoint to Point ProtocolPPP0EPPP over Ethernet		Lightweight Directory Access Flotocol
LINALow Noise AmplifierLNSL2TP Network ServerLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPARProject Authorization RequirementsPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPMParts Per MillionPPPPoint to Point ProtocolPPP0EPPP over Ethernet		
LNSL2TP Network ServerLSBLeast Significant BitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPARProject Authorization RequirementsPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPMParts Per MillionPPPPoint to Point ProtocolPPPoEPPP over Ethernet		LOW Noise Ampliner
LosLeast orgnineant bitMACMedium Access ControlMBWAMobile Broadband Wireless AccessMSBMost Significant BitPAPower AmplifierPARProject Authorization RequirementsPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPMParts Per MillionPPPPoint to Point ProtocolPPPoEPPP over Ethernet	LING	Least Significant Bit
Mixed Michael Access Control MBWA Mobile Broadband Wireless Access MSB Most Significant Bit PA Power Amplifier PAR Project Authorization Requirements PCH Paging Channel PDCL Packet Data Conversion Layer PHY Physical Layer PID Paging Identity PPM Parts Per Million PPP Point to Point Protocol PPPoE PPP cover Ethernet	MAC	Medium Access Control
Middle Diodubatid Witeless Access MSB Most Significant Bit PA Power Amplifier PAR Project Authorization Requirements PCH Paging Channel PDCL Packet Data Conversion Layer PHY Physical Layer PID Paging Identity PPM Parts Per Million PPP Point to Point Protocol PPPoE PPP cover Ethernet		Mobile Broadband Wireless Access
Most organicant bitPAPower AmplifierPARProject Authorization RequirementsPCHPaging ChannelPDCLPacket Data Conversion LayerPHYPhysical LayerPIDPaging IdentityPPMParts Per MillionPPPPoint to Point ProtocolPPPoEPPP over Ethernet	MSB	Most Significant Bit
PAR Project Authorization Requirements PCH Paging Channel PDCL Packet Data Conversion Layer PHY Physical Layer PID Paging Identity PPM Parts Per Million PPP Point to Point Protocol PPPoE PPP over Ethernet		Power Amplifier
PCH Paging Channel PDCL Packet Data Conversion Layer PHY Physical Layer PID Paging Identity PPM Parts Per Million PPP Point to Point Protocol PPPoE PPP over Ethernet	PAR	Project Authorization Requirements
PDCL Packet Data Conversion Layer PHY Physical Layer PID Paging Identity PPM Parts Per Million PPP Point to Point Protocol PPPoE PPP over Ethernet	PCH	Paging Channel
PHY Physical Layer PID Paging Identity PPM Parts Per Million PPP Point to Point Protocol PPPoE PPP over Ethernet	PDCI	Packet Data Conversion Laver
PID Paging Identity PPM Parts Per Million PPP Point to Point Protocol PPPoE PPP over Ethernet	PHY	Physical Laver
PPM Parts Per Million PPP Point to Point Protocol PPPoE PPP over Ethernet	PID	Paging Identity
PPP Point to Point Protocol PPPoE PPP over Ethernet	PPM	Parts Per Million
PPPoE PPP over Ethernet	PPP	Point to Point Protocol
	PPPoF	PPP over Ethernet
PSS Packet Services Switch	PSS	Packet Services Switch

QoS	Quality of Service
RA	Request Access
RACH	Random Access Channel
RSA	Rivest, Shamir, Adleman
RF	Radio Frequency
RLC	Radio Link Control
RM	Registration Management
RMU	RLC Message Unit
RRC	Radio Resource Control or Root Raised Cosine
RSSI	Received Signal Strength Indicator
SDMA	Space Division Multiple Access
SDU	Service Data Unit
SINR	Signal-to-Interference plus Noise Ratio
SN	Slot Number
SNR	Signal to Noise Ratio
ТСН	Traffic Channel
TDD	Time Division Duplex
TDMA	Time Division Multiple Access
TWAN	Transport Wide Area Network
UM	Unacknowledged Mode
UT	User Terminal

1 5 Introduction

By this document, Kyocera team respectfully submits Technology Performance and
Evaluation Report 1 for the proposed TDD technology tilted MBTDD 625k-MC
(BEST-WINE) (Broadband MobilE SpaTial Wireless InterNet AccEss), which is
an enhanced air interface based on "ATIS-PP-0700004-2005, High Capacity-

6 Spatial Division Multiple Access (HC-SDMA),

7 This *Evaluation Report 2* report presents both the link level performance and system 8 level Technology Performance results obtained from simulations by following the 9 methodologies specified in the *Evaluation Criteria Document* [5] while using the 10 channel models defined in *Channel Model* document [4].

11 5.1 Purpose of This Report

12 This Evaluation Report 2 serves as the basis for comparing with other technology13 proposals.

14 5.2 Key Technologies

- 15 Key technologies of the MBTDD 625k-MC (BEST-WINE) system are
 - Adaptive Antenna Array Processing
 - Spatial Division Multiple Access
 - Link Adaptation with Modulation and Coding

19 5.3 System Model

16

17

18

20 **5.3.1 Cell layout: 19BS / 3sector**

- 21 The system layout consists of 19 cells with each cell split into 3 sectors as shown in Figure
- 22 5-1. Inter BS separation is 1.73 km and the cell radius is 1km.
- 23 Each cell is divided into 3 sectors, characterized by the antenna direction of each sector. The
- sectors are numbered counter-clock wise as 0, 1 and 2, respectively, where the respective
- 25 antenna direction is 0: $\theta=0^{\circ}$, 1: $\theta=120^{\circ}$, 3: $\theta=240^{\circ}$; θ is the local polar angle of the cell.
- Following this convention, the first sector of the center cell is indexed (0, 0), while the last
- 27 sector is indexed (18,2). Mobiles are uniformly dropped in each sector excluding an area of 28 radius 35 meters around the cell center
- 28 radius 35 meters around the cell center.

- 1
- 1
- 2 3
- 1
- 4

5 5.3.2 Channel models

The channel models used are as specified in [4]. The channel model and the associated spatial
parameters are summarized in Table 5.1. The subpath spatial parameters are shown in Table
5.2.

numbering of cells

- 9
- 10 11

Table 5-1 Link level simulation channel models and associated spatialparameters

Models		case-i		case-ii		case-iii		case-Iv	
PDP		Pedestria	n-A	Vehicular-A		Pedestrian-B (Phase I)		Vehicular-B (Phase I)	
Numbe	er of			6		6		6	
Paths		4							
ver		0	0	0	0	0	0	-2.5	0
vod	()	-9.7	110	-1.0	310	-0.9	200	0	300
B)	y (ns	-19.2	190	-9.0	710	-4.9	800	-12.8	8900
ve P (d	ela	-22.8	410	-10.0	1090	-8.0	1200	-10.0	12900
lati	D			-15.0	1730	-7.8	2300	-25.2	17100
Re				-20.0	2510	-23.9	3700	-16.0	20000
Speed (km/h)		3, 30, 120		30, 120	0, 250	3,	•	30, 120,	250
Μ ο	Topology	0.5λ		0.5λ		0.5λ		0.5λ	

	PAS	 LOS on: Fixed AoA for LOS component, remaining power has 360 degree uniform PAS. LOS off: PAS with a Laplacian distribution, RMS angle spread of 35 degrees per path 	RMS angle spread of 35 degrees per path with a Laplacian distribution Or 360 degree uniform PAS	RMS angle spread of 35 degrees per path with a Laplacian distribution	RMS angle spread of 35 degrees per path with a Laplacian distribution Or 360 degree uniform PAS	
	DoT (degrees)	0	22.5	-22.5	22.5	
	AoA (degrees)	22.5 (LOS component) 67.5 (all other paths)	67.5 (all paths)	67.5 (all paths)	67.5 (all paths)	
	Topology		Referenc	e: ULA with		
		0.5	5λ-spacing or 4λ-	-spacing or 10λ	-spacing	
ion	PAS	Laplacian distribution with RMS angle spread of				
Stat		2 degrees or 5 degrees,				
ase		per path depending on AoA/AoD				
В	AoD/AoA	50° for 2° RMS angle spread per path				
	(degrees)		20° for 5° RMS a	angle spread per pa	ıth	

Table 5-2 Sub-path spatial parameters AoD and AoA offset

Sub-path # (m)	Offset for a 2 deg AS at BS(Macrocell) $\Delta_{n,m,AoD}$ (degrees)	Offset for a 35 deg AS at MS $\Delta_{n,m,AoA}$ (degrees)
1, 2	± 0.0894	± 1.5649
3, 4	± 0.2826	± 4.9447
5, 6	± 0.4984	± 8.7224
7, 8	± 0.7431	± 13.0045
9, 10	± 1.0257	± 17.9492
11, 12	± 1.3594	± 23.7899
13, 14	± 1.7688	± 30.9538
15, 16	± 2.2961	± 40.1824
17, 18	± 3.0389	± 53.1816
19, 20	± 4.3101	± 75.4274

3

4

Link Level Simulations 5 6

The link level simulation results for the Pedestrian A, Pedestrian B, Vehicular A and 6

Vehicular B channels are presented for both uplink and downlink. The FER and throughput 7 results for ModClasses 0-10 [8] and [9] are plotted in Fig. 6-1 to 6-40.

8

6.1 3 km/hr Pedestrian A 9

6.1.1 Uplink 10

Figure 6-2 Throughput for 3km/hr Pedestrian A (Uplink)

3

4

9

Figure 6-4 Throughput for 3km/hr Pedestrian A (Downlink)

3 6.2 <u>30km/hr Pedestrian A</u>

4 **6.2.1 Uplink**

Figure 6-5 FER for 30km/hr Pedestrian A (Uplink)

6 7

5

5 6

Figure 6-7 FER for 30km/hr Pedestrian A (Downlink)

Figure 6-8 Throughput for 30km/hr Pedestrian A (Downlink)

1 6.3 <u>120 km/hr Pedestrian A</u>

2 6.3.1 Uplink

Figure 6-9 FER for 120km/hr pedestrian A (Uplink)

6 7

3

Figure 6-10 Throughput for 120km/hr pedestrian A (Uplink)

1 6.3.2 Downlink

2 3

Figure 6-12 Throughput for 120km/hr Pedestrian A (Downlink)

1 6.4 30 km/hr Vehicular A

2 6.4.1 Uplink

Figure 6-14 Throughput for 30km/hr Vehicular A (Uplink)

5

1 6.4.2 Downlink

2

Figure 6-16 Throughput for 30km/hr Vehicular A (Downlink)

1 6.5 <u>120 km/hr Vehicular A</u>

2 6.5.1 Uplink

Figure 6-17 FER for 120km/hr Vehicular A (Uplink)

1 6.5.2 Downlink

2 3

4

5 6

.

Figure 6-20 Throughput for 120km/hr Vehicular A (Downlink)

- 7 6.6 250 km/hr Vehicular A
- 8 6.6.1 Uplink
- 9

Figure 6-21 FER for 250km/hr Vehicular A (Uplink)

Figure 6-22 Throughput for 250km/hr Vehicular A (Uplink)

6

4 5

7 6.6.2 Downlink

8

Figure 6-24 Throughput for 250km/hr Vehicular A (Downlink)

5 6.7 <u>3 km/hr Pedestrian B</u>

6 6.7.1 Uplink

1 2 3

6 7

4 **6.7.2 Downlink**

Figure 6-27 FER for 3km/hr Pedestrian B (Downlink)

Figure 6-28 Throughput for 3km/hr Pedestrian B (Downlink)

1 6.8 <u>30 km/hr Vehicular B</u>

2 6.8.1 Uplink

3 4

5

1 6.8.2 Downlink

Downlink Vehicular-B-30km/h 30km/h mod10 30km/h mod9 1600 30km/h mod8 1400 30km/h mod7 30km/h mod6 1200 Throughput[kbps 30km/h mod5 1000 30km/h mod4 800 30km/h mod3 30km/h mod2 600 30km/h mod1 400 30km/h mod0 200 0 -10 -5 0 5 10 15 20 25 30 SINR[dB]

5 6

2

1 6.9 <u>120 km/hr Vehicular B</u>

2 6.9.1 Uplink

Figure 6-33 FER for 120km/hr Vehicular B (Uplink)

3 4

5

7

8

Figure 6-34 Throughput for 120km/hr Vehicular B (Uplink)

9 6.9.2 Downlink

3

Figure 6-36 Throughput for 120km/hr Vehicular B (Downlink)

6 6.10250 km/hr Vehicular B

7 6.10.1 Uplink

Figure 6-40 Throughput for 250km/hr Vehicular B (Downlink)

3 7 System Level Simulations

4 7.1 Traffic model Performance

5 7.1.1 Traffic Model Calibration

This section constitutes the calibration of the traffic models as required by the evaluation
criteria document. Traffic was generated for a length of time such that 10⁶ instances of each
parameter occurred. The statistics for these parameter were then measured. The considered
traffic models are: HTTP, FTP, VoIP and near real time video.

Table 7-1 shows the parameters to consider and the measured mean compared to the expected
theoretical value. Figure 7-1 to Figure 7-11 show the cumulative density function (cdf) of all

13 the random parameters involved in the generation of the different traffic models.

14

Table 7-1 Traffic model parameters

	Parameter	Theoretical	Measured (from 1x10 ⁶ samples)
НТТР	1 didinotor	Theoretical	
Main File Object size (bytes)	Mean	10710	10734
Embedded Object size (bytes)	Mean	7758	7821
No Embedded Objects per			
page	Mean	5.64	5.628
Reading Time (sec)	Mean	30	29.94
Parsing Time (sec)	Mean	0.13	0.1301
FTP		•	
File Size (bytes)	Mean	2x 10 ⁶	2x10 ⁶
Reading Time (sec)	Mean	180	179.9065
NRTV			
Packet (Slice) size	Mean	50	50.6658
Interarrival time	Mean	6	5.9399
Network Delay			
Domestic	Mean	10	10.001
International	Mean	110	109.9995

1 7.1.1.1 HTTP

2 7.1.1.1.1 HTTP Main File Object Size

6 7.1.1.1.2 HTTP Embedded Object Size

3

4 5

1 7.1.1.1.3 HTTP Number of Embedded Objects per Page

7 7.1.1.1.4 HTTP Reading Time

10 11

1 7.1.1.1.5 HTTP Parsing Time

Figure 7-5 HTTP Reading time

4 7.1.1.2 FTP

2

3

5 **7.1.1.2.1 FTP File Size**

1 7.1.1.2.2 FTP Reading Time

6 7.1.1.3.1 NRTV Packet Size

7 8

1 7.1.1.3.2 NRTV Inter-arrival Time

5 7.1.1.4 Network Delay

6 The Domestic and International delay cdfs are shown in Figure 7-10 and Figure 7-11,

7 respectively.

2 3

4

8 9

Page 36

Figure 7-10 Domestic network delay

$$X = \frac{\lg\left(\frac{Ta}{100}\right)}{\lg 2}$$

Further, I_{e-eff} is defined as shown below, with $I_e=11$ and Bpl = 19% (note that *Bpl* is measured in percents based on random packet loss probability *Ppl*).

21
$$Ie - eff = Ie + (95 - Ie) \frac{Ppl}{Ppl + Bpl}$$

The R-value when G.729 Codec is used are presented in Figures---.

- 1 Figure 7-12 plots the R-value for the different received BCH level at the UT. Figure 7-13.
- 2 plots the R-value for different end-to-end delay. End to end delay is the sum of one-way
- 3 delay, packetization delay and jitter buffer delay. The packetization error (encode and
- 4 decode) is 25ms and the jitter buffer delay is 40ms. The BCH receive level is fixed at –
- 5 65dBm. Figure 7-14 plots the R-value for various packet loss in the network.
- 6

Figure 7-13 R-value for different delay

3

Figure 7-14 R-value for different packet loss

4 7.1.3 VoIP and HTTP user performance

5 This section presents the performance when enhancements techniques are used in a system 6 with coexisting VoIP and HTTP users. 625k-MC allows 11 ModClasses giving a higher data 7 rate with higher ModClass. However, VoIP users need a much lower data rate. Hence it is 8 useful to limit the peak modulation class for VoIP sessions. Limiting peak modulation class 9 reduces transmit power (for non-cell edge users). This helps in reducing system interference 10 level for both uplink and downlink and increase the battery life on the uplink. Figure 7-15 11 plots the cdf of the data rate of the HTTP users, when the ModClass for VoIP is not restricted 12 (red dashed line) and restricted to 0 (blue solid line).

13 A prevalent voice coding scheme is G.729 with VAD/CNG and a common mode within this

scheme is 8kbps coded voice bit rate with two coded speech samples per RTP packet. Adding
 in RTP/UDP/IP/625k-MC header, this results in a maximum voice stream bit rate of 25.2kbps.

Figure 7-15 HTTP user throughput in the presence of VoIP users

- 1
- Figure 7-16 and Figure 7-17 plot the percentile distribution results of uplink and downlink
- 2 3 voice quality for 24 users as HTTP users varies. The voice quality remains almost same
- 4 irrespective of the number of HTTP users. Network dealy is not considered. ModClass
- 5 restriction is used for VoIP users.
- 6

- 15 number of users registered on the BS. Here, the throughput is defined in terms of data delivered from the client TCP stack to the client FTP stack, i.e., in terms of useful FTP 16 application data delivered to the user. Figures 7-19 below present the aggregate BS downlink 17
- throughput as a function of the number of FTP users registered on the BS when HTTP and 18
- 19 FTP users exist. In all of these simulations, for ease of presentation, there were exactly 4
- 20 HTTP users. The aggregate throughput results with mixed traffic look almost exactly like the
- 21 aggregate throughput results for the FTP-only traffic scenarios presented in Fig. 7-18. This is

Submission

- 1 because the HTTP users have very bursty traffic but a very small average data rate when
- 2 compared with the FTP users. Therefore the HTTP users neither degrade nor contribute much

FTP Traffic Scenario (3 traffic spatial channels per conventional channel)

- 3 to the aggregate capacity in these mixed traffic scenarios.
- 4

5 6

Figure 7-18 Aggregate BS FTP data throughput for heavy downlink traffic

8 Figure 7-19 Aggregate BS FTP data throughput for heavy downlink traffic

9 7.1.5 TCP – HTTP

10 Figures 7-20 and 7-21 below present the HTTP web page response time as a function of the

number of users registered on the BS for uplink and downlink. 11

Figure 7-20 Relative uplink TCP segment delay

1 2

Figure 7-21 Aggregate BS FTP data throughput for heavy downlink traffic

5 7.2 Traffic mix

6 Traffic mix as shown in Table 7-2 is used.

7

Table 7-2 Traffic mix: percentage of different Traffic Types

Traffic Category	Application	Percentage (%)
Best Effort	FTP	30
Interactive	Web browsing	30
Streaming	Video streaming	30
Real-time	VoIP	10

8

9 The simulation parameters for this evaluation are given in Table 7.3. The channel

10 model parameters are given in Table 5-1 and 5-2..

BS antenna	Number of antennas	12
	Antenna separation	0.5 λ
UT antenna	Number of antennas	4
	Antenna separation	0.5 λ
Layout		19BS with 3sector each
max Tx power at BS		39dBm/12ant
max Tx power at UT		27dBm
BS antenna gain		17dBi
UT antenna gain		0dBi
BS NF		5dB
UT NF		10dB
Temperature		15°C
BS cable loss		3dB
UT body loss		3dB
Simulation bandwidth		2.5MHz (4 carriers)
		(1 carrier = 625 kHz)

2

3 The suburban macro 3km/hr, 120km/hr and the channel mix scenario are considered [5]. The

4 channel mix percentage is as specified in Table 7.4 and Table 7.5 [5].

5

Table 7-4 Suburban macro channel mix

Channel PDP Models		Ι			II		III		IV	
User speed (km/h)	3	30	120	30	120	250	3	30	120	250
Probability	0.20	0.12	0.08	0.12	0.08	0.0	0.20	0.12	0.08	0.0

6 7

Table 7-5 Urban micro channel mix

Channel PDP Models		Ι			II		III		IV	
User speed (km/h)	3	30	120	30	120	25	3	30	120	25
						0				0
Probability	0.29	0.14	0	0.14	0	0	0.29	0.14	0	0

8

9 The per user average throughput and packet delay for the various application under the traffic

10 mix scenario are plotted in Figure 7-22 and Figure 7-23. There are 21 users in each sector.

Figure 7-22 User throughput under traffic mix scenario

Figure 7-23 Packet delay under traffic mix scenario

Submission

3

4 5

R. Canchi et.al KYOCERA

- 1 The R-factor cdf for the VoIP user in a traffic mix scenario is plotted in Fig. 7-24. The R-
- 2 value was found to be greater than 78.

Figure 7-24 R-value cdf

5 7.3 Mobility Model

3 4

6 7.3.1 Handover procedure

Handover is performed as described in Chapter 22 of [8] and a minimum of 6 frames will be
necessary for handover. The handover procedure for UT in connected state and UT in notconnected state is the same. UT continuously monitors the signal level from surrounding BSs.
When the UT finds signal level form a BS to which the UT is not currently registered to be
higher that the signal level from the BS to which it is registered, handover occurs.

12 **7.3.2 Mobility direction**

13 A 19 cell system is considered. Only one UT is assumed to be moving while the rest of the

14 UT are assumed stationary as specified in [5]. The UT moving in the direction as shown in

15 Fig. 7.25 is considered. The UT is connected to the center BS.

Figure 7-25 Mobility direction

3 7.3.3 Handover distance

The distance from the originating BS at which handover occurs is plotted in Fig. 7-26, 7-28 and Fig. 7-30 for UT velocity of 3km/hr, 30km/hr and 120km/hr, respectively. An edge loss of 9dB was incurred around the distance where the maximum number of handover occurred. The red line in Figs 7-27, 7-29 and 7-31 show the distance from the originating BS where the 9dB edge loss was enforced. When edge loss is enforced, probability of handover at the edge loss location increases. In all the simulations performed there was no handover failure.

Figure 7-26 Handover distance for 3km/hr

11

12

1 2

3 4

5

Figure 7-29 Handover distance for 30km/hr with edge loss

7

[']8 Figure 7.32 shows the distance from the handover start point over which the handover is

- 9 performed. For 3km/hr, 90% of the users perform handover within 10m.
- 10

Figure 7-32 Handover range

3 7.3.4 Handover Delay

4 The handover delay shown in Fig. 7-33 is the cdf taken over all the velocities: 3km/hr,

5 30km/hr and 120km/hr. Minimum of 30ms (6 frames) is required for handover. However, due 6 to frame error, the handover delay increases and the probability of delay between 40 to 45 ms

- 7 was the highest. The average delay was found to be about 42ms.
- 8

9 10

Figure 7-33 Handover delay

Submission

- 7.4 Overhead Channels
- 3 The UT receiver is expected to detect the desired page burst and reject undesired bursts
- 4 always. Undesired bursts include noise-only case and page bursts intended for other users.
- 5 Under certain channel conditions, UT can have a false detect or reject a valid page burst.
- 6 False alarm increases RA (Random Access) interference whereas failure to detect valid page
- 7 bursts increases latency. The UT receiver's ability to maximize detection probability and 8 minimize false alarm rate (FAR) is an important performance measure.
- 9 625k-MC system has some mechanisms for improvement of data transmitting using overhead
- 10 channels as following.

7.4.1 PCH Transmission 11

12 In a fading channel, if the page burst gets deeply faded, detection probability drops drastically.

13 In order to improve the detection probability, it's better to have multiple representations of

the burst with time diversity. Currently, 625k-MC supports two-slot selection diversity. Fig. 14

- 7-34 shows the sub slots structure of PCH burst. PCH burst consist from implied resource and 15
- 16 diversity resource as shown in Fig. 7-34. 17
 - 10 µs 512 µs \$12 us 10 µs12 µs10 µs 10 µs14 µs Ĵ Sub slot Gaard Time Ramp-Down Ramp-Down urst Guard Ramp-Up Ramp-Up INFORMATION SYMBOLS INFORMATION SYMBOLS Implied Burst **Diversity Burst** 1090 µs

18 19

20 21

Figure 7-34 PCH physical burst structure

A page burst is detected if the normalized correlation between the received and the reference 22

23 page bursts exceed the detection threshold. The detection threshold is calculated to achieve a

- fixed FAR. To achieve an FAR of 10^{-5} , the detection threshold is set to 0.2362 for the 24
- 25 normalized correlation.
- 26 Desired page burst - single slot (0Hz Fading Channel) - Due to large spread in the
- 27 distribution of the correlation ratio, a fading channel requires more power than the AWGN
- 28 channel to achieve the same detection rate when only one slot is used. Figure 7-35 shows that
- 29 we can achieve more than 90% detection at -2dB SNR.
- 30 Desired page burst - two slot diversity (0Hz Fading Channel) - In order to improve the
- 31 detection probability in a fading channel, two-slot selection diversity is used in 625k-MC.
- 32 Figure 7-36. shows that we can achieve more than 90% detection at -8dB SNR. This result is
- 33 6 dB better than the case when we use a single slot.
- 34

3 4

Figure 7-36 PCH detection statistics with two-slot diversity

0.5

threshold

0.6

0.7

Submission

0

0.1

0.2

0.3

0.4

R. Canchi et.al KYOCERA

0.9

1

0.8

2

8 Practical System Results

The proposed MBTDD 625k-MC (BEST-WINE)'s base system HC-SDMA [1] has been implemented and tested in some countries. Few snapshots of experimental results from the experimental set up in Yokohama, Japan are shown below. Figure 8-1 shows the average throughput of 1Mbps for 21 users, communicating simultaneously. The FTP throughput when the vehicle is moving at an average speed of 60km/hr and 100km/hr is shown in Figure 8-2.

- 8 The handover result for a vehicle is moving at an average speed of 60km/hr is shown in 9 Figure 8-3. A high average throughput is maintained in spite of the handover.
- 10

- 11 12
- Figure 8-1 Data rate of 1Mbps for 21 simultaneously communicating users
- 13

- 14
- 15

Figure 8-2 Throughput for 60km/hr and 100km/hr

2 3

4 5

A field test for traffic mix with the same percentage of each application as that for simulation
was performed. The conditions are as follows:

-			
10	Carrier	4 (with 3 spatial channels)	
11	BS	1 (2.5MHz)	
12	UT	34	
13	Load	FTP	10 users
14		Video Streaming (Video)	10 users
15		Web browsing (HTTP)	10 users
16		VoIP	4 users
17			
18	Video: 5 mins of co	ontent requiring a data rate mor	e than 450kbps was repeated viewed using

- 19 real player.
- 20 Ftp: Data of 100Mbyte was continuously downloaded.
- 21 HTTP: The following 22 pages were viewed repeatedly. Each page was viewed for 6secs
- 22 after being displayed.23 1. http://homepag
 - 1. http://homepage.mac.com/jinjin/applescript/
- 24 2. http://www.geocities.co.jp/SiliconValley/2627/
- 25 3. http://www02.so-net.ne.jp/~oable/okui/unix_howto.html#ftp/
- 26 4. http://www.atmarkit.co.jp/fnetwork/rensai/tcp05/01.html#5/
- 27 5. http://www2s.biglobe.ne.jp/~hig/ppp/ppp.html#PPP_5/
- 28 6. http://www.ne.jp/asahi/earth/stomomi/RFC/
- 29 7. http://www.ipc.kobe-u.ac.jp/contents/Kouhou/mage/mage24/terashima/node12.html/
- 30 8. http://www.allied-telesis.co.jp/library/nw_guide/index.html/
- 31 9. http://www.dive-in.to/~hideto/mtu/
- 32 10. http://www.yahoo.co.jp/
- 33 11. http://www.msn.co.jp/home.armx/
- 34 12. http://search.cqpub.co.jp/finder/Searchterm.asp?q1=ssi/
- 35 13. http://news.yahoo.co.jp/ranking/
- 36 14. http://homepage1.nifty.com/masawat/sen_html/pcdos.html/
- 37 15. http://www.atmarkit.co.jp/fwin2k/win2ktips/044nat/nat.html/
- 38 16. http://www.google.co.jp/

- 1 17. http://e-words.jp/
- 2 18. http://e-words.jp/
- 3 19. http://www.soi.wide.ad.jp/
- 4 20. http://www.princeton.co.jp/
- 5 21. http://www.kokuyo.co.jp/
- 6 22. http://www.hagitec.co.jp/
- 8 The result of the field test are presented in Fig. 8.4. From the experimental result it can be
- 9 observed that a stable throughput has been achieved for the VoIP users. The R-value for VoIP
- 10 was greater than 79.
- 11

15 Overh

16

12

13

14

Table 8.1 shows the throughput obtained from the field test with 24 UT continuously
downloading data.. Theoretically obtainable throughput can be calculated as follows:
Maximum obtainable downlink throughput: 1,061 kbps×24 CH = 24.9 Mbps
Maximum obtainable uplink throughput: 346 kbps×24 CH = 8.1 Mbps

21

The difference between the theoretical and field test throughput is due to the overhead
channel and the channel. The loss is seen to be less than 10% for both uplink and downlink.
Hence even for no loss in the channel, the loss due to overhead channels in a continuous

- download condition is seen to be less than 10%.
- 26

27

Table 8-1	Date rate and	spectrum e	efficiency	test results
-----------	---------------	------------	------------	--------------

Data Flow Direction	Typical/Terminal	Total Data Rates/Base station	Spectrum Efficiency (bit/sec/Hz/sector)
Downlink	942kbps	22.6Mbps	6.8

Uplink	290kbps	7.0Mbps	4.2
Total	1,232kbps	29.6Mbps	5.9