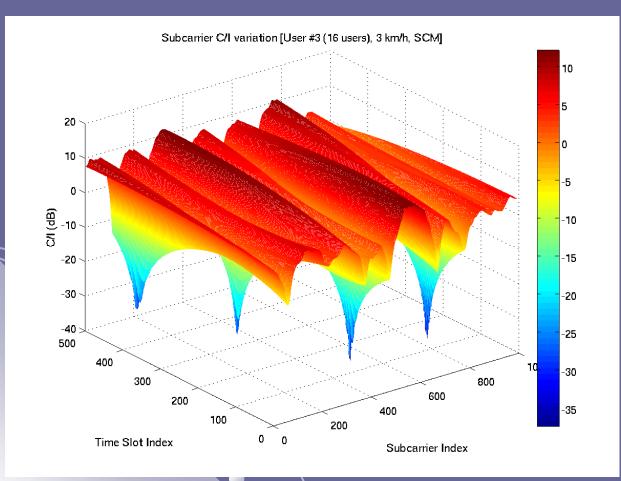
Project	IEEE 802.20 Working Group on Mobile Broadband Wireless Acces < <u>http://grouper.ieee.org/groups/802/20/</u> >
Title	Partial proposal on channel multiplexing Presentation
Date Submitted	2007-03-13 (March 13, 2007)
Source(s):	Anna Tee Zhouyue Pi, Jiann-an Tsai, Cornelius van Rensburg, Yinong Ding, Farooq Khan Samsung Telecommunications America
Re:	IEEE 802.20 Call for Proposals
Abstract	This document proposes a flexible channel multiplexing scheme for the Mobile Broadband Wireless Access Systems.
Purpose	For consideration and adoption as a feature supported by 802.20 standar
Notice	This document has been prepared to assist the IEEE 802.20 Working Group. It is offer as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and conten after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication may made public by IEEE 802.20.
Patent Policy	The contributor is familiar with IEEE patent policy, as outlined in <u>Section 6.3 of the</u> <u>IEEE-SA Standards Board Operations Manual</u> < <u>http://standards.ieee.org/guides/opman/sect6.html#6.3</u> > and in <i>Understanding Patent</i> <i>Issues During IEEE Standards Development</i> < <u>http://standards.ieee.org/board/pat/guide.html</u> >.

Partial Proposal on Channel Multiplexing

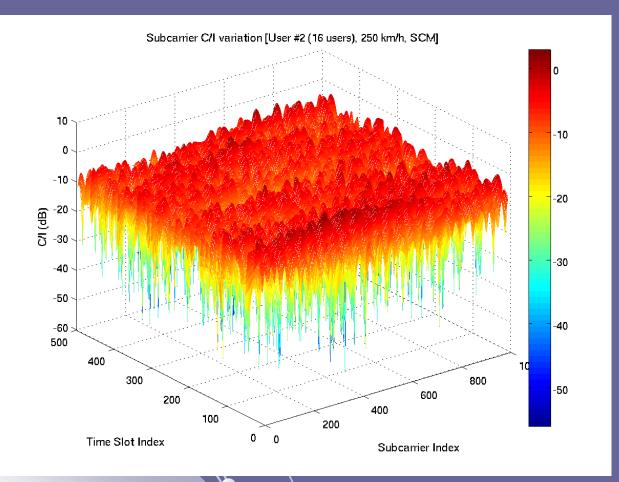
Anna Tee Zhouyue Pi, Jiann-an Tsai, Cornelius van Rensburg, Yinong Ding, Farooq Khan March 13, 2007

Introduction


- Propose a scheme to multiplex different types of user channels flexibly in an OFDMA mobile cellular system
 - Contiguous subcarrier channel for subband scheduling
 - Distributed subcarrier channel for diversity gain
- Simultaneous support of these two types of channels was related to one of the open issues from Letter Ballot 1 and 2 Comments

Previous proposals and the new 3GPP2 Ultra Mobile Broadband (UMB) standard support similar schemes [1], [2], [3]

Mobile Cellular Channel Characteristics


- Users may be located in a poor geometry or with high mobility
 - Not a specific subband that has significantly better C/I than others
 - At high mobility, the channel quality feedback will become out-ofdate at the time of scheduled transmission
 - May not be benefited from subband scheduling
 - May be more beneficial to have transmission over subcarriers that span across the entire bandwidth
 - To maximize frequency diversity gain
- In contrast, some user channels may be highly frequency selective
 - Advantageous to have the user transmission over the subbands that have better C/I

Subcarrier C/I Characteristics - Example for Slow mobility

- 3 km/h
- Spatial Channel Model [1] [2]
- 16 users/sector

Subcarrier C/I Characteristics Example for High Mobility

- 250 km/h
- Spatial Channel model
- 16 users/sector

OFDMA Channel Multiplexing

- Based on the channel characteristics, OFDMA channels can be classified into two different types in general:
 - 1. Contiguous Subcarrier Channel (BRCH)
 - Consists of a contiguous block of physical subcarriers
 - Allocated channel unit usually in the form of a tile because of the contiguity in time and frequency
 - Allocation based on frequency subband scheduling
 - Distributed Subcarrier Channel (DRCH)
 - Consists of subcarriers that are distributed across the system bandwidth

Advantageous for frequency diversity gain

Channel Structure in MBTDD/FDD

Forward Link

- Symbol Hopping mode
 - Similar to distributed subcarrier channels
- Block Hopping mode
 - Tiles of fixed size: 16 subcarriers by 8 symbols (slots)
 - Three different pilot patterns
 - 18 or 24 pilot tones per tile
 - Similar to contiguous subcarrier channels

Reverse Link

- Block hopping
 - Tiles of fixed size: 16 subcarriers by 8 symbols (slots)
 - Two different pilot patterns
 - 18 or 24 pilot tones per tile

Proposed Design

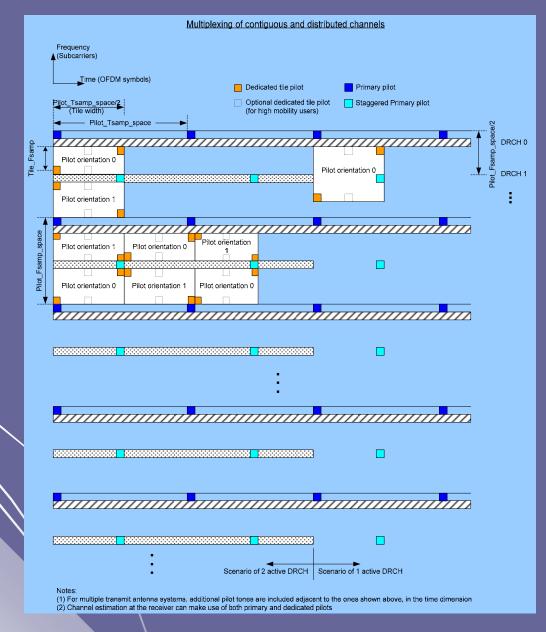
- Common primary pilots with Staggering
- For multiple transmit antenna systems, additional pilot tones can be allocated in the adjacent time slots on the same pilot subcarriers
 DRCH
 - Users with poor geometry or high mobility
 - Start with the set of subcarriers in immediate
 adjacency to the set of primary pilot subcarriers
 For improved channel estimation accuracy
 - Number of DRCH allocated based on number of users meeting certain criteria
 - e.g., poor geometry, high mobility

DRCH

DRCH assignment Rule

 First DRCH (DRCH0) in the frame - allocated to the set of subcarriers immediately below those that carry the primary pilot tone;

- Second DRCH (DRCH1) allocated to the set of subcarriers that carry the staggered pilot tone;
- Additional DRCH allocated to the set of subcarriers immediately following DRCH0 or DRCH1, alternatively.
- Subcarrier location can be easily identified by DRCH channel index "n"


Define:

N_primary_pilot = Index of the first primary pilot subcarrier
 Rilot_SC_spacing = Spacing between primary pilot subcarriers

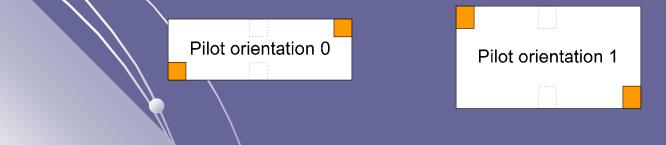
• Thus:

- Index of the first subcarrier allocated to DRCHn
 - = N_primary_pilot + n, n even;
 - = N_primary_pilot + Pilot_SC_spacing/2 + n, n odd

Channel Multiplexing Scenario

BRCH

For users with frequency selective channels


- Exceptional channel quality at specific portions of the spectrum
- A set of contiguous subcarriers from that subband may be allocated
- Higher spectral efficiency and link reliability
- Resource (Time, Frequency) allocation units are in the form of tiles

Contiguous time slots (symbols)

Tile Structure

Tile Structure

- Flexible in frequency subcarrier dimension
 - Dependent on the number of available subcarriers after DRCH assignment
- Pilot tones located at diagonally opposite corners
- Two possible pilot orientations
- Optional pilot tones can be included at the midpoint of the tile edge
- Smaller tiles can be aggregated into bigger tiles
- Orientation of pilots can be chosen to support certain types of MIMO modes if desirable

BRCH Addressing

- Number of contiguous subcarriers available for a tile varies depending on the number of DRCH allocated
- For BRCH m, number of frequency subcarriers

 = Pilot_SC_spacing/2 n mod 2, m even;
 n: number of DRCH assigned
 = Pilot_SC_spacing/2 (n-1) mod 2, m odd

Forward Link Control Channel

- Control information needs to be received by all users in the coverage area of a sector
- Forward link control channel to be transmitted in the time slots (symbols) using the same subcarriers as the common primary pilot channel
 - An additional forward link control channel to be transmitted in time slots (symbols) using the same subcarriers as the staggered pilots
 - if necessary
- Distributed subcarriers to take advantage of frequency cliversity gain

Channel Quality (C/I) Measurement Feedback

C/I feedback by access terminals (AT)

• Mean and standard deviation of pilot C/I measurements

- Taken across all pilot subcarriers (SC) in the frequency dimension, i.e., for measurements taken within the similar time frame
- The best N pilot C/I measurements, including the indices of the pilot SC
 - Value of N: parameter to be configured at the access network
 - Can be broadcasted as part of the SystemInfo through the primary broadcast control channel, pBCH0
 - Alternatively, N may also be included as part of the information transmitted in the forward link shared control channel
 - AT shall feedback a "maximum" of N pilot C/I measurements, including the pilot SC indices, that are larger than the computed mean across all the pilot SC, in the C/I report, as the 'Delta' above mean
 - Let $(C/I)_x$ = Measurement of pilot SC x

• Delta
$$x = (C/I)_x - (C/I)_{mean}$$

Support of Frequency Hopping

- Frequency Hopping
 - Both hopping and non-hopping modes are supported
 - Hopping mode
 - Mapping between the logical subcarriers and physical subcarriers changes over time according to a pre-determined sequence
 - Logical channel structure as described earlier remains unaffected
 - Supported by MBTDD/FDD (802.20 standard draft)

Non-hopping mode

Frequency planning required to place pilot subcarriers at fixed offset from those in adjacent sectors

Intercell Interference Control

- Intercell interference can be minimized in the proposed channel multiplexing structure
- Distributed subchannels (DRCH) may be transmitted at the maximum power, P_{max}
 - Users are typically at poor geometry (low C/I)
- Band scheduling subchannels (BRCH) may be transmitted at lower power
 - Users are typically at better geometry (high C/I)
 - Initial transmission at a lower power, P_o
 - With each HARQ re-transmission, the transmit power can be increased by a fixed step, ΔP :

• $P_{max} = P_0 + N_{max}^* \Delta P$

N_{max}: maximum number of HARQ re-transmissions

Comparison with MBTDD/MBFDD

Channel Structure

- Current 802.20 standard draft (MBTDD/FDD) does not support symbol hopping and block hopping users simultaneously in the same cell site
- Our proposal supports both types of users simultaneously in the same cell site
- Both hopping or non-hopping modes are supported
- Tile format and pilot structure
 - Current 802.20 standard draft supports a fixed tile size of 16 subcarriers x 8 OFDM symbols, with 18 or 24 dedicated pilot tones per tile
 - Our proposal supports flexible tile size, with 2 pilot tones per
 - Can be increased to 4 pilot tones if necessary
 - Much lower overhead especially for SISO users
 - Enables channel estimation using a combination of common, primary (and staggered) pilots and dedicated pilots on the tile

Major Changes Required

- Include additional tile formats for the forward link, Section 9.3.2.6.2.3.4 F-DPICH Format 3; modify Table 70, Section 7.4.6.3.1.2
- Include additional tile formats to the RL, Section 9.4.1.6.1.1.3; modify Table 70, Section 7.4.6.3.1.2
- Include an additional field (1 bit) in the link assignment block to indicate which type of channel structure is assigned
 - Assignment message include channel index; with information about the number of assigned DRCH, in the case of BRCH assignment
- In the case of new tile format, include one bit for the pilot orientation, and an additional bit to indicate if the optional pilot tones are used

Conclusion

- Current proposal supports an MBWA system that can optimize user and system throughput performance by using channel knowledge
- In the absence of channel knowledge, user and system can benefit from frequency diversity gain
- An improvement over the design as described in the current version of the standard draft
- New tile structure which is flexible in size with lower pilot overhead
 - SISO users can be supported efficiently, as most of the dedicated pilot tones in the adopted tile design are redundant for SISO users
 - Beneficial for bursty traffic that may consist of small data packets, as the granularity of resource assignment is increased

References

- 1. H. Lee, 'Technology Overview', C802.20-05/72, November 28, 2005
- 2. A. Jette, H. Bi, '802.20 Technical overview Presentation', Jan 15, 2007
- 3. 3GPP2 C30-20060731-040R2, "Joint proposal for 3GPP2 physical layer for FDD spectra" by China Unicom, Huawei, KDDI, LGE, Lucent, Motorola, Nortel, Qualcomm, RITT, Samsung, and ZTE, July 31, 2006.
- 4. 'Draft Standard for Local and Metropolitan Area Networks -Standard Air Interface for Mobile Broadband Wireless Access Systems Supporting Vehicular Mobility - Physical and Media Access Control Layer Specification', IEEE P802.20/D2.1, May 2006.

'3GPP, TR25.996, "Spatial Channel Model for Multiple Input Multiple Output (MIMO) ['Spatial Channel Model Text Description', SCM-135, 3GPP/3GPP2 Spatial Channel Model Ad-Hoc]

6. 'Overview of the Spatial Channel Model developed in 3GPP-3GPP2', C802.20-04/79, Nov 15, 2004.

5.