Benefits of OFDM for Mobile Broadband Wireless Access

Samir Kapoor <u>s.kapoor@flarion.com</u>

IEEE 802 MBWA ECSG November 14, 2002

Key OFDM Air Interface Design Advantages

- PHY/MAC
 - Intra-cell interference
 - Fine air-link resource granularity
 - Pilots
 - Power & Timing Control
 - Data Requests & Assignments
 - Fast Acks
- Other
 - Universal frequency re-use
 - True packet-switched air interface
 - Handoff support

Intra-cell Orthogonality

- Repeat portion of each OFDM symbol in cyclic prefix (CP)
 - Gracefully handles large delay spreads; eliminates ISI
 - Aids in synchronization
- By choosing appropriate parameters, each tone can be made *orthogonal*, even after multipath delay spread
 - Sinusoid waveforms (tones) are the only functions that preserve orthogonality over multipath wireless channels
 - In contrast, DS-CDMA codes do not have this property, and are not orthogonal under multi-path
- Significantly simpler receiver design for high data rates
 No training overhead for RAKE or receiver equalizer

Tone Orthogonality

Fine Granularity of DL/UL Airinterface resources

• OFDM supports fine granularity in distribution of air-link resources (time-slots, frequency tones)

Fine Granularity Contd.

- Key attribute for multiple access
 - Smallest transmit/receive unit can be 1 bit
 - Allows for dedicated, low-overhead control channels, e.g., power control, timing control, uplink requests, etc.
 - Maximizes number of active users supportable
- Can avoid inefficient control channels based on messaging with addressing overhead
- Low cost of "starting and stopping" transmission of data traffic and control messages
- Facilitates multiple MAC states to optimize resource allocation and usage per user

Pilots

- OFDM allows for time-frequency spaced grid of Downlink and/or Uplink pilots
 - Allows sharing of DL pilot tones across all users for efficiency and eliminates overhead for data and control frames
 - Supports per-user pilots on UL for coherent demodulation
 - Pilot tones can appear temporally "continuous" (e.g., mobiles see pilots every symbol time) to accommodate high-Doppler environments
 - Can be used to identify different Base Stations

Power and Timing Control

• Power Control

- Intra-cell orthogonality in OFDM allows for Mobiles to transmit access requests without time-consuming and interference-generating transmit power ramp-up
- Supports open- and closed-loop power control techniques for DL and UL
- Timing Control
 - Uplink transmissions synchronized to allow for single FFT in Base Station receiver
 - Slow update rate required even at vehicular speeds
 - Mobiles not actively transmitting and receiving data need only be timing-controlled

Data Requests and Assignments

- Packet-switched DL
 - Base Station can assign DL time/frequency resources with minimal delay
 - Supports large user population with "high maintainence" data connections
- Packet switched UL
 - Can eliminate contention-based UL data requests
 - Can support deterministic UL data request times

Fast MAC frame ACKs

- Can support efficient ARQ ACKs/NAKs for MAC frames
 - Deterministic ARQ round trip time: Critical to maintaining QoS for highly interactive data services (e.g., Gaming, VoIP)
 - Minimize impact on TCP RTT timer evolution
 - Low overhead: Enabled by fine granularity

Interactive Data

Universal Frequency Reuse

- OFDM allows for inter-cell interference averaging via frequency-hopping.
 - Allows for universal frequency reuse
 - Link budget can be designed for averaged (not bursty) interference
- Efficient use of expensive licensed cellular spectrum
- Supports smart antenna techniques for < 1 frequency reuse
- Enhances ease of deployment; reduces need for network engineering

Packet Switched Air-interface

- Suitability for packet-switched UL and DL
 - Supports fully scheduled DL and UL
 - Allows resource partitioning on a MAC frame basis
 - Supports large number of Active and Dormant users
 - Very low overhead and latency for fast control channels (e.g., frequent MAC frame Acks, Data requests etc)
 - Mobiles not actively transmitting and receiving data only incur timing control overhead
 - UL Contention-based access distinct from data traffic
 - Rich QoS support for multiple traffic types with reduced signaling overhead

Handoffs

- Allows for deterministic UL and DL latencies in handoff signaling
 - Crucial for vehicular speed handoffs
 - Contention-free UL data requests
 - No interference between random access and data traffic
 - Supports multiple simultaneous Mobile & BS air-links
- Supports QoS differentiation between random access from new mobiles versus handoff mobiles

Better user experience

Summary

- OFDM based Modulation and Multiple-Access is ideally suited for packet-switched Mobile Broadband Air-interfaces
- Can elegantly achieve a complex balance amongst:
 - Simple transmitter & receiver design for broadband data rates with vehicular mobility
 - Lightweight, finely granular control structure
 - Supporting a large user population
 - High level of interactivity and low deterministic latencies
 - Embodying spread spectrum principles for interference control
 - Rich QoS feature set