The 4D-PAM8 Proposal for 10GBASE-T

Sailesh Rao
Raju Hormis
Eugene Krouk

Intel Corporation
Agenda

• Current 10GBASE-T proposals
• Theoretical Noise Budgets
• Advanced techniques for 10GBASE-T
• Achieving 12dB coding gain
• Tomlinson Harashima pre-coding
• PCS Encoding
• Startup
• Concluding Remarks
Current 10GBASE-T proposals

- 625MHz PAM-20 (~Cicada), 833MHz PAM-10 (SolarFlare), 1250MHz PAM-5 (Plato Labs)
 - PAM provides the lowest peak-to-average ratio over other line code options.
 - Use PCS signaling and 4D Trellis coding of 1000BASE-T.
 - 6dB coding gain.
- Assuming Cat-7 cabling for noise budgeting.
- Assuming Launch voltage = 2V ptp (Plato)
 - compatible with 1000BASE-T, 100BASE-Tx
 - SolarFlare proposal uses ~3V ptp
Theoretical Noise Budget – 625MHz PAM20 = 17.2mV ptp on 100m CAT-7
Theoretical Noise Budget – 833MHz PAM10 = 20.2mV ptp on 100m CAT-7
Theoretical Noise Budget – 1.25GHz PAM5 = 25mV ptp on 100m CAT-7
Theoretical Noise Budget – 125MHz PAM5 = 149mV ptp on 100m CAT-5
On Current Proposals

- Need to improve coding gain of 10GBASE-T system to improve noise immunity!

- Much better system than 1000BASE-T can be designed with less stringent latency requirement
 - 880ns MDI-MDI round trip latency specified in 1000BASE-T for back-to-back operation.
 - if MDI-MDI round trip latency budget is on the order of 1us for 10GBASE-T, we can use significantly more powerful techniques to improve robustness of 10GBASE-T

- 1000BASE-T line code and Forward Error Correction (FEC) code were designed for half-duplex operation
 - Strict latency budget requirements of CSMA-CD necessitated simple FEC codes
 - 4D TCM used in 1000BASE-T shows weak Bit Error Rate reduction as a function of receiver Signal to Noise Ratio

- Half-duplex operation is not supported in 802.3ae 10G MAC
Advanced Techniques for 10GBASE-T

- **Capacity Approaching Forward Error Correction (FEC) Code**
 - Gallagher’s Low Density Parity Check (LDPC) Block Code
 - Achieves strong BER reduction as a function of SNR

- **12dB co-set partitioning for improved noise tolerance**
 - 6dB co-set partitioning used in 1000BASE-T
 - Doubles noise tolerance over 6dB partitioned codes

- **Tomlinson-Harashima pre-coding to reduce receiver complexity**
 - allows spectral shaping in the transmitter to reduce alien cross-talk coupling
 - eliminates Decision Feedback Equalizer (DFE) error propagation, even with large DFE coefficients
Capacity Approaching Code

- Gallagher’s Low Density Parity Check (LDPC) Code
 - First introduced in Robert Gallagher’s MIT PhD thesis in 1960
 - Re-discovered by Mackay and Neal in 1995. Since then,
 - used in high performance optical networking systems
 - Proposed by JPL for use by Consultative Committee for Space Data Systems (CCSDS)
 - Receiver uses an iterative belief propagation decoder to achieve waterfall reduction of BER as a function of SNR.
 - uses sparse matrix techniques to minimize decoder complexity
 - reasonably low latency requirement in the decoder
 - allows block processing to reduce receiver complexity
 - can be based on provably good block codes to maximize Hamming distance between code words.
 - (2048,1723) Reed Solomon based LDPC code ensures regularity of encoder and decoder architecture, while allowing for 12dB coding gain.
12dB Co-set Partitioning

- +2
- +1
- 0
- -1
- -2

12dB co-set partitioning in 4DPAM-8 10GBASE-T
(transmit 8 levels, but achieve noise immunity of 2 level transmission)

6dB co-set partitioning in 4DPAM-5 1000BASE-T
(transmit 5 levels, but achieve noise immunity of 3 level transmission)
LDPC Co-set Encoding

Data block size = 2560 bits over 256 symbols
Control block size = 187 bits
Information block size = 2747 bits = 1723+1024 bits

1723 bits
Bits 0 to 1722

1723 bits
LDPC encoder (2048, 1723)

y : 2048 coded bits

1024 bits
Bits 1723 to 2746

1024 PAM-8 symbols

Bit-to-symbol Mapping

1024 un-coded bits
Bit-to-Symbol Mapping

Each coded bit difference contributes an Euclidean distance of 4.
(2048,1723) RS-LDPC Code Properties

- Girth of the Tanner graph = 6
- Degree of each variable node in Tanner graph = 6
- Degree of each check node in Tanner graph = 32
- Hamming distance of the code = 8
- Minimum Euclidean distance between 4D PAM-8 code words >= 16
- Euclidean distance between points in each co-set is 16.
- Therefore coding gain over un-coded PAM-8 is 12dB.
Example Simulation results

Simulations on AWGN channel

- Simulated LDPC PAM-3 with 12dB costas partitioning
- Theoretical uncoded PAM-3
Simulation results
Tomlinson-Harashima Pre-coding

- Independently developed by Tomlinson and Harashima in 1971.
- Uses a Decision Feedback Equalizer at the transmitter instead of the receiver.
 - receiver computes DFE coefficients during startup and sends coefficients over to transmitter
 - advantage - allows for block processing and decoding at the receiver.
 - advantage - reduces complexity of receiver analog front end.
 - drawback - increases complexity of transmitter.

![Diagram of PAM symbol, Modulo, LPF, and FIR-DFE processes]
Extended Lattice Mapping

Extended lattice preserves the properties of the RS-LDPC code…
PCS Encoding

- Data words transmitted as is in each block of 256 4D symbols
- Control block of 187 bits:

<table>
<thead>
<tr>
<th>5 Start packet delimiters</th>
<th>5 End packet Delimiters + TxER encoding</th>
<th>DFE Coefficient Update</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 bits</td>
<td>50 bits</td>
<td>1 bit</td>
<td>64 bits</td>
</tr>
</tbody>
</table>

DFE Update
Valid
Startup

- Initial startup using 2-level transmission
 - Corresponds to +/- 4 level.
 - Recover timing and adaptive filter coefficients
 - Establish polarity correction, pair swap
 - Establish 256-symbol block boundaries
 - Exchange initial DFE coefficients
 - Switch to Block coded transmission.

Ch A
Ch B
Ch C
Ch D
Concluding Remarks

• Presented outline of a 4D-PAM8 proposal
 • Uses RS-LDPC code and belief propagation decoder to achieve waterfall reduction of BER as a function of SNR.
 • Expect waterfall reduction of BER to continue until ~1E-20 BER limit...
 • Double the noise immunity and coding gain of existing 4D TCM based proposals
 • Tomlinson-Harashima pre-coding to eliminate DFE error propagation
 • Uses CRC protected control blocks to transmit delimiters.
 • Allows for block processing to reduce complexity of receiver.

• Allows for 100m worst-case, extended CAT-6 operation…