Enhanced Spreadsheet Model for 10Gb/s MMF Links

Petar Pepeljugoski, IBM Research, Yorktown Heights, NY 10598
petarp@us.ibm.com
(914)-945-3761
Acknowledgement

• Part of this work has been funded by NIST-ATP and the Photonics CAD project
Why this presentation?

• Not to ask to change current Ethernet and FC spreadsheet models
• Not to offer new model (for now)

• Show what feature enhancements are possible
 – True signal propagation, eye diagrams
 – Possibility to include equalizer structures
 – Incorporation of models of arbitrary complexity

• Demonstrate user interface simplification
Modeling approach in the Ethernet spreadsheet model

• Assumes Gaussian signal shapes and transfer functions, uses approximate formulas
• Propagation effects can not be added in a simple manner
 – DMD effects and launch effects (pulse splitting etc.)
 – Group delay distortions
 – Chirp
 – Reflections
• Uses power model assumptions exclusively – not accurate for predicting 1300nm and 1550nm SMF link performance
• Uses effective baud rate instead of base rate to take into account deterministic jitter effects
 – Noise calculations affected (mode partition noise, RIN), chromatic dispersion effects affected
 – Jitter calculation affected
• Formula assumptions inaccurate for some noise models
 – Mode partition noise – continuum of modes is not valid assumption
• Low frequency cut-off added as a noise penalty, may be inaccurate
Why do we still use it?

✓ It is cost effective (free)
✓ Instant results – push of a button
✓ Runs on Excel – virtually on any PC
✗ Overestimates some and underestimates other penalties, overall accurate

Why do we need changes to the model?

• Optimal trade-offs between link components may be affected, leading to higher total link costs
• Equalized links can’t be easily simulated
Typical Link Diagram

TX

Data In

Laser Driver

Laser Diode

Optical Fiber

(MMF 50, 62.5 μm or SMF)

RX

PD+TIA

PA

Data Out

TP1

TP2

TP3

TP3.5

TP4
Excel Add-in

• Based on IBM Multimode Fiber Model presented at the January Interim in Vancouver, BC

✓ Models developed in Matlab were translated to C++, compiled and Excel add-in created
 – Retains advantages of full blown simulator

✓ Similar interface to existing Ethernet spreadsheet model
 – Fewer cells
 – Demo version does not have all bells and whistles
 ✗ Takes ~10 sec to compute link budget for 10 lengths (CPU speed dependent)

✓ Creates eye diagrams

✗ User can’t make changes to the compiled models
 → How much do we care about this?
Excel Add-in Interface
Conclusion

• Signal propagation based models are more flexible, potentially more accurate

• Use of Excel Add-ins Enables:
 – Retain familiar user interface suitable for most users
 – May offer better trade-offs
 – May simplify the spreadsheet (eliminate unnecessary cells), artificial accounting for jitter
 – Possible to add arbitrarily complex device models
 – Possible to include various equalizer structures

• How do we proceed from here?