Cabling and PHY options

IEEE 802.3 Multigig Automotive Ethernet PHY Study Group George Zimmerman CME Consulting, Inc / Aquantia

Outline

- Getting the Pump Primed!
 What else matters
- Choices
- Interactions
- Implications
- Recommendations

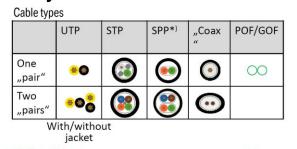
Getting the Pump Primed!

- PHY designers design to a media spec
- Cabling designers design to an application's requirements

- BUT: Our objectives require us to make choices on both PHY and media type
 - The purpose of this presentation is to get things rolling...

What Else Matters

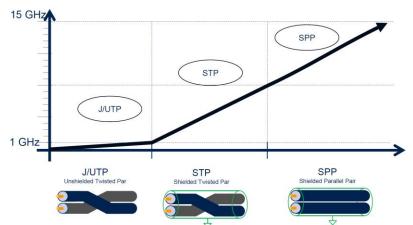
- Our media must be "automotive" quality
 - Installation and maintainability are key
 - Must be suitable for mass production and maintenance in automotive environments
- Some (not all) proposed applications could be safety-impacting (automated driving)
 - Robust performance must be achievable with minimal latency (e.g., without Layer 2/3 retransmission)
 - Unscheduled interruptions of data are not allowed
 - Is this true at all speeds, or more true at 10Gbps, e.g., applications where uncompressed video and/or high frame rates are needed?


Choices

- Number of paths in the medium: 1 or more than 1?
 - If more than 1: bidirectional lanes or unidirectional?
 - Cost of echo-cancelling PHY complexity
- Possible Cabling types:
 - Questions in:
 - matheus_kaindl_3NGauto_01a_0217.pdf
 - buntz_NGAUTO_01c_0217.pdf
- Possibilities given in: <u>mueller_NGAuto_1a_0217.pdf</u>
 - Various automotive types reviewed

Bandwidth	UTP	STQ	STP/SPP	Coax
<1 GHz	Likely	Likely	Likely	Likely
<3 GHz	Unlikely	Likely	Likely	Likely
<5 GHz	Unlikely	Unlikely	Likely	Likely
>6 GHz	Unlikely	Unlikely	Possible	Likely

Table above represents this presenter's impression from mueller


IEEE 802.3 MultiGigabit Automotive Ethernet PHY Study Group – May 3 2017 Ad Hoc

Differential cables

Rosenberger

Cable types for differential signaling

Interactions

- PHY levels/coding increases with decreasing cable complexity
 - Low bandwidths increase challenge to DSP & noise/EMC immunity
 - High bandwidths transfer complexity to cabling & analog

Cabling Bandwidth	UTP 10G PAM	STQ 10G PAM	STP/SPP 10G PAM	Coax 10G PAM
<1 GHz	76-128 ¹	76-128	76-128	76-128
<3 GHz		5-16 ²	5-16	5-16
<5 GHz			3-4 ³	3-4
>6 GHz			2-4	2-4

- All levels based on requirement for 25% excess cabling bandwidth specified
- Red-yellow-green to indicate degree of difficulty with cabling & EMC considerations
- Notes on upper-end of PAM levels:
 - 1. 128 levels based on extension of 10G/40GBASE-T coding
 - 2. 16 levels is extension of 2.5/5/10/25/40GBASE-T
 - 3. 4 levels is extension of existing PAM-4 specifications

Implications

- Media choice and PHY complexity are tightly coupled
- PHY can be designed for any of these choices (except perhaps UTP/10G)
- Comparison of complexity is a systems issue, unless media choices are driven by other considerations

Recommendation

- Plan of attack:
 - Bring automotive media recommendations first (input from OEM's, Tier 1's)
 - Converge on a strawman link segment spec for each speed
 - Bandwidth, Shielding, IL
 - Recommend 10G first, as this can present a strawman for scaling to other rates
 - (either by baud or levels, TBD)

THANK YOU!

Consensus WE BUILD IT.

Connect with us on:

Facebook: https://www.facebook.com/ieeesa

Twitter: @ieeesa

LinkedIn: http://www.linkedin.com/groups/IEEESA-Official-IEEE-Standards-Association-1791118

IEEE-SA Standards Insight blog: http://standardsinsight.com

YouTube: IEEE-SA Channel

IEEE

standards.ieee.org Phone: +1 732 981 0060 Fax: +1 732 562 1571 © IEEE