

Noise considerations for RTPGE objectives

Gavin Parnaby

IEEE 802.3 RTPGE Study Group

Geneva

September 2012

Preface

- Close to moving out of study group phase
- Presentations have been made on automotive requirements for EMC, power, lifetime, link specification etc.
- Some capacity analysis
 - http://grouper.ieee.org/groups/802/3/RTPGE/public/july12/huang_ 01_0712.pdf
 - http://grouper.ieee.org/groups/802/3/RTPGE/public/july12/mei_01
 _0712.pdf
 - But analysis presented so far excludes some important items that will influence choice of modulation scheme, cable type, signaling rate, latency, FEC, training etc.

Recap – Shannon capacity / Salz SNR

- Shannon capacity of a narrow frequency band of width B in AWGN is W*log2(1+S/N) in bits per second
- Integrate over entire frequency range to calculate capacity of the channel
 - Shannon does not specify a method to achieve capacity
- Salz bounds the SNR achievable with a Decision Feedback Equalizer
 - Simple receiver
 - Assumes infinite length filtering
 - Assumes perfect decisions
- Both approaches depend on estimates of the noise power across frequencies

What is noise?

- Noise = self noise + alien noise
- Self noise is residual interference caused by our own signal that is uncancelled
 - Residual ISI, Residual NEXT, Residual FEXT
- Alien noise is energy that is not due to the signal of interest
 - Energy on the wire when the transmitter we care about is not active
- High data rates for RTPGE require higher signal bandwidths/higher order modulations, increasing the receiver exposure to noise sources
- Automobile dynamics mean noise may be hard to predict and control

Capacity/SNR analysis

- Included so far...
 - Residual near end, far end, alien crosstalk and (for Salz) intersymbol interference
- Baseline capacity and SNR numbers for some existing cable types have been presented
 - MMSE analysis for ISI
 - Salz analysis assumes infinite length FFE/DFE
- Some results included the use of flat -140dBm/Hz background noise
 - as in 802.3an (10GBASE-T) specification
- Residual echo not included in numbers shown in huang_02_0712.pdf

Additional background noise

- Measurements in data-centers were taken for 10GBASE-T project to validate noise level assumptions
- Entirety of background noise may not be modeled in previous analysis
 - Power train noise (petrol/diesel/hybrid vehicle differences?)
 - Digital electronics emissions (ECMs)
 - Motors / air conditioning etc.
 - See http://www.ofcom.org.uk/static/archive/ra/topics/research/topics/emc/powertrain-emissions.pdf
 - What is the mean noise level?
 - Is it shaped?
 - Are narrowband interferers present?
 - Is it well modeled by AWGN?
 - We should measure this noise to determine whether it affects channel capacity

Noise from narrowband interferers - EMI

- Narrowband interferers do not significantly affect Shannon capacity
 - Narrow frequency range of signal is affected
 - Dependent upon interferer bandwidth (1kHz for CISPR)
 - Shannon capacity in a narrow frequency range can approach zero without overall link channel capacity changing significantly
- Out-of-band interferers can be filtered in the analog front end before the ADC
- **But**.. in-band interferers are more difficult to separate from the desired signal and are typically cancelled after the A/D -> should be included in loading analysis?
 - Front end requirements tend to dominate long-term achievable power/cost
 - Some common approaches for robust performance in the presence of NBI reduce systems performance (SNR), can limit link capability and/or add complexity
- Good design (balance etc.) can limit coupling of external sources but it may be hard to eliminate the effect of NBI completely

Noise from narrowband interferers - EMI

- The environment for RTPGE is significantly different from a data-center
- A automobile in motion may interact with multiple dynamic external interferers at the same time
 - TV and radio transmissions (continuous), walkie-talkies, MPT1237, wireless microphones, TETRA, keyless entry, wireless tire pressure monitoring etc.
- Cabling harness is close to other sources of interference with near field characteristics
 - Near glove compartment and car occupants cellphone, pagers, walkietalkies, ham radio?
- When these interferers appear or disappear the link should maintain desired link quality
- EMI requirements should be included in system analysis to avoid under/over designing system

Narrowband interferers - tests

- Narrowband EMI is included in automotive testing requirements
- Automotive EMI interferer tests use high field strengths
 - e.g. some manufacturers have requirements for 100V/m+ field strengths compared to typical 3-10V/m for Ethernet (typically in industrial environ.)
 - stress front-end headroom and linearity
- Typical EMI testing appears to cover one narrowband disturbance at a time
 - There are many manufacturer tests with different signal levels, modulation, frequency ranges etc.
- Are these worst case conditions for RTPGE?
 - Need to understand manufacturer testing goals and how the tests compare to the real environment

Impulse noise

- Effect of impulsive, wideband noise should be analyzed
 - Do we need to consider other EM transients?
 - engine ignition [self or adjacent] and turn off
 - static discharge
 - lightning?
 - Impulse noise can be tolerated with error correction coding / interleaver / impulse noise detection
 - Adds latency / cost (memory)
 - Not generally specified for 802.3 PHYs but used in other standards e.g. DOCSIS, DVB
- Should we develop an impulse noise model?

What to do?

- We could define worst case differential mode / common mode noise tolerated by PHY
 - How to specify this? How to measure?
- We could use a specific environmental EMI / alien noise model to evaluate PHY proposals
 - How do we design this model?
 - Based on existing automotive EMI test scenarios
 - Take measurements to correlate with real environment
- Other options?
- Define reliability requirements
 - E.g. robustness of media system transport vs powertrain

Conclusions

Conclusions

- Form a noise modeling ad hoc and invite presentations
 - Can automotive vendors provide initial background noise measurements from the cable harness?
 - Consult with vendors re: existing EMI test requirements
 - Develop test levels, models etc.
 - Determine need for impulse noise model and develop if necessary
- Enable PHY vendors to
 - Perform initial front-end/loading analysis
 - Develop simulations to model receiver capability / capacity impact / reaction time for typical receiver architectures, and investigate training algorithms and robustness
 - Compare PHY options

MARVELL

Potential objectives

- 1. Define the worst-case noise conditions for RTPGE applications including background noise, impulse noise and EMI environment
- 2. Determine reliability requirements for RTPGE applications
- 3. Define a PHY to meet the reliability requirements in the defined worst-case noise environment

Thank you

M A R V E L L®