

# 200G per Lane for beyond 400GbE

Cedric Lam, Xiang Zhou, and Hong Liu

07/27/2020 IEEE 802.3 NEA Meeting

### Outline

- Driver and use cases for beyond 400G
- Justification for 200G per lane
  - Lower TCO
  - Scalability to 1.6T Ethernet
- 200G optical lane technical feasibilities
  - Baseline performance for different modulation format choices
  - Key component requirements
  - 200G per lane (optical) components readiness survey

## DC Traffic Continues to Grow Rapidly (Regular Servers)



Google

2020

### > 400GbE will be needed in DCN Fabrics



### Why 200G per Lane?

- Cost efficiency for 800G
- Path to 1.6Tb per port

### Cost/Gbps vs. Speed per Optical Lane



• Faster optical lane speed is key to lower costs, but needs to align with electrical I/O speed for best cost & power efficiency

# Implementation Comparison of 800G

|                             | IM-DD PAM (8 lanes ) IM-DD PAM (4 lanes) |                                       |  |
|-----------------------------|------------------------------------------|---------------------------------------|--|
| Baud Rate (Gbaud)           | 56G                                      | ~112G                                 |  |
| Number of Lasers            | 8                                        | 4                                     |  |
| MZMs and Drivers            | 8 4                                      |                                       |  |
| PD/TIAs                     | 8                                        | 4                                     |  |
| Relative DSP power          | 1                                        | ~1.1 (stronger FEC and DSP )          |  |
| Link distance               | Limited by dispersion (2km, CWDM8)       | Limited by dispersion (< 1km*, CWDM4) |  |
| Fan out granularity         | 100Gb/s                                  | 200Gb/s                               |  |
| Scale to 1.6Tb/s and beyond | No                                       | Yes                                   |  |

\* Reach may be extended by more powerful DSP such as MLSE (Ilya Lyubomirsky, IEEE 2020 summer topical talk)

### Necessity of 200Gbps Electrical Lanes

- Scalability and visibility into 1.6T Ethernet
  - OSFP defined 8 electrical lanes
  - 8x 200G gives us 1.6 capacity
- Enable 100Tbps Switch ASIC
- Matching the electrical lane speed w/ optical lane speed
  - Simplifies module architectures
  - Reduces overall power consumption
  - $\circ$  ~ Keeps the cost down in the long run



### 100Tbps Switch ASIC in 4 Years



Google



# **200G Optical Lane Technical Feasibilities**

### System Model

### Focus on the following Functions/Blocks

- Two candidate modulation formats: PAM4 and PAM6
- 2 types of transmitters
  - InP EML
  - SiP MZM
- PD + TIA: R=0.8A/W, IRN=16pA/sqrt(Hz)
- Digital Electronics
  - 6-tap Tx FFE, 17-tap Rx-FFE, T-spaced
  - FEC threshold 4e-3 assumed for 200Gb/s per lane\*

\* Ilya Lyubomirsky, "Coherent vs. Direct Detection for Next Generation Intra-Datacenter Optical Interconnects," IEEE 2020 summer topical

# Overall comparison: PAM4 vs PAM6

|                                               | PAM4                          | PAM6                        |  |
|-----------------------------------------------|-------------------------------|-----------------------------|--|
| Baud rate                                     | ~113Gbuad                     | ~90Gbaud                    |  |
| Rx sensitivity penalty <sup>A</sup> @45GHz BW | ~4.9dB                        | ~3.3dB                      |  |
| Rx sensitivity penalty <sup>A</sup> @50GHz BW | ~2.3dB                        | ~2.4dB                      |  |
| Rx sensitivity penalty <sup>A</sup> @55GHz BW | ~1.6dB                        | ~2.2dB                      |  |
| Support 1km O-CWDM4 CD with EML               | Yes<br>CD penalty<1.5dB@55GHz | Yes<br>CD penalty<1dB@55GHz |  |
| DAC/ADC ENOB requirement                      | ∼5.5 (stronger EQ)            | ∼5.5 (higher-order mod.)    |  |
| Relative DSP power                            | 1                             | <1 ?                        |  |

<sup>A</sup>: Compared to 106Gb/s per lane PAM4 with KP4 FEC

- If PAM6 can achieve lower power, a dual-mode PAM4/PAM6 may be considered
  - PAM4 only for difficult links (higher link loss and/or MPI)
  - PAM6 for majority of the normal links to save overall network power

Google

Transmitter 1: InP EML



#### **3-dB Bandwidth**

Preliminary requirements guideline to support 1km 800G CWDM4 reach

- Assume support both PAM4 and PAM6
- **Prototype:** 2 vendor meet the preliminary guideline requirements for <u>cooled EML</u>
- 2-year projected: 1 vendor meet the preliminary guideline requirements for uncooled EML

### Transmitter 1 : EML Driver

#### 3-dB Bandwidth

#### **Drive swing**



- **Prototype**: 1 vendor meets the preliminary guideline requirements
- 2-year projected: 3 vendors meet the preliminary guideline requirements

### Transmitter 2: SiP-MZM

**3-dB Bandwidth** DC Vpi Insertion loss (dB) Vendor 1 Vendor 2 Vendor Vendor 2 Vendor Vendor 2 3dB bandwidth (GHz) 10 60 8 8 Vpi (V) 6 40 6 IL (dB) 4 20 BC 2 2 0 n Best in Mass State-of-the-art Projection in 2 Best in Mass State-of-the-art Projection in 2 Best in Mass State-of-the-art Projection in 2 Production Prototype years Production Prototype vears Production Prototype vears

• **2-year projected:** 1 vendor meets the preliminary guideline requirements for DR reach

Google

# 200Gb/s per lane components survey

### Transmitter 2: SiP-MZM driver

#### **3-dB Bandwidth**



#### Drive output swing



- **Prototype**: 2 vendor meets the preliminary guideline requirements
- 2-year projected: 4 vendors meet the preliminary guideline requirements

Receiver: PD+TIA



• **2-year projected**: 2 vendor meet the preliminary guideline requirements

Digital Electronics: CMOS DAC and ADC







• **Prototype**: 2 vendor meets the preliminary BW guideline requirements

## 200Gb/s per Optiacal Lane Components Readiness

### For 500m DR4 and 1km CWDM4

|                          |            | Mass Production | Prototype  | 2-year Projected   |
|--------------------------|------------|-----------------|------------|--------------------|
| Transmitter 1<br>InP EML | InP EML    | ×               | ✓ (cooled) | ✓ (uncooled)       |
|                          | EML Driver | ×               | 1          | 1                  |
| Transmitter 2<br>SiP MZM | MZM (SiPh) | ×               | ×          | Ready for DR-reach |
|                          | MZM Driver | ×               | 1          | <b>s</b>           |
| Receiver                 | PD / TIA   | ×               | ×          | <b>J</b>           |
| Electronics              | CMOS DSP   | 🗶 (7nm)         | ✔ (5nm)    | ✔ (5nm/3nm)        |

### Conclusions

- Demands for datacenter bandwidths keep growing quickly.
- It is right time to develop the next higher-speed Ethernet beyond 400GbE
- For intra-datacenter applications, 200Gbps per lane IM-DD implementation provides:
  - Lower TCO
  - Pathway to 1.6Tbps Ethernet
- Technical feasibility of 200Gbps per optical lane is within the reach in the next two years
  - Well within the time frame to complete the next higher-speed Ethernet standard