10GBASE-KR Start-Up Protocol

Supporters
Luke Chang, Intel
Justin Gaither, Xilinx
Ilango Ganga, Intel
Andre Szczepanek, TI
Pat Thaler, Agilent

Rob Brink, Agere Systems
Scope and Purpose

- This presentation describes a start-up protocol for 10GBASE-KR.
- This presentation is an extension of earlier presentations related to the “Link Initialization Protocol”.
 - Incorporates feedback from various parties.
 - Examines issues related to feedback loop stability.
 - Examines interactions with Auto-Negotiation and Management.
From the November 2004 Plenary…

- **Straw Poll #7**
 Adaptive transmitter and training protocol is part of the 10GBASE-KR PMD.
 Yes: 35, No: 4, Abstain: 13

- **Straw Poll #9 [Chicago Rules]**
 Training for 10GBASE-KR:
 Must implement, can turn off: 36
 Must implement, cannot turn off: 6
 Do not need to implement: 10
Agenda

- **Start-Up Protocol Wish List**
- **Review of Link Initialization Protocol**
 - Link Model
 - Training Frame Structure
 - Start-Up Protocol
 - Loop Stability
 - Auto-Negotiation
 - Management
- **Conclusions**
Start-Up Protocol Benefits

- Optimizes transmitter FIR.
- Automatic power control.
 - Receiver may steer the transmitter output voltage to the minimum level required for acceptable performance.
 - May also mitigate crosstalk.
- Optimize receiver equalizer.
 - Joint adaptation of transmitter and receiver yields superior solution to independent adaptation.
Start-Up Protocol Wish List

- Simple.
- Robust and Reliable.
- Interoperable.
- Fast convergence time.
 - Minimize time from connection to full link operation.
Agenda

- Start-Up Protocol Wish List
 - Link Model
 - Training Frame Structure
 - Start-Up Protocol
 - Loop Stability
 - Auto-Negotiation
 - Management
- Conclusions
Link Model

![Diagram of Link Model]

- **Encode**
- **Decode**
- **Receive**
- **Transmit**
- **PMD Control**
- **Adaptation**

PMD Service Interface

signal_detect
Frame length is 800 bits (100 bytes).
- Divisible by both 16 and 20.
- 36-bytes of overhead, 64-byte training pattern
- 1 frame every ~78ns at 10.3125Gb/s
Training Frame Summary (2/2)

- Frame consists of a Control Channel followed by a Training Pattern.
- Control Channel is transmitted at 1/4 of the 10GBASE-KR signaling rate.
 - Detectable over unequalized or partially equalized channels.
- Control channel is signaled with Differential Manchester Encoding.
 - Guarantees 50% transition density.
 - Guarantees DC balance.
- Control channel begins with a Manchester Violation.
 - Frame delimiter.
Slow Down Control Channel

- Define a “slow-down” factor of 4 10.3125Gb/s symbols.
 - Maximum run length is 16 10.3125Gb/s symbols (in delimiter).
Control Channel

- The control channel communicates 32-bits of information.
 - Maps to 2 16-bit registers in MDIO.
- Control channel must contain *ReceiverReady* (RR) bit to support start-up protocol, but other bits may assigned based on the PMD requirements.
- One way to do this is to specify a coefficient update field (16-bits) and status report field (16-bits).
- Transmission order is left-to-right.
Coefficient Update (1/2)

- 2 bytes support parallel update of transmitter FIR coefficients to a maximum of 7 taps.
 - It is not necessary for an implementation to support all 7 taps.
 - Minimum number required to be determined via signaling simulation.

- Each tap has an associated action.
 - Decrement / Hold / Increment
 - Agnostic to the supported tap weight resolution.
 - Tolerant of corrupted or lost coefficient updates.
 - Actions applied to unsupported taps are ignored.

<table>
<thead>
<tr>
<th>Action</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold</td>
<td>00</td>
</tr>
<tr>
<td>Decrement</td>
<td>01</td>
</tr>
<tr>
<td>Increment</td>
<td>10</td>
</tr>
<tr>
<td>Reserved</td>
<td>11</td>
</tr>
</tbody>
</table>
Coefficient Update (2/2)

- **Update Gain (UG)**
 - Coefficient step size may be increased to speed convergence.
 - Large gain may be used initially, then decreased to 1X for finer tuning.

<table>
<thead>
<tr>
<th>UG</th>
<th>Coefficient Step Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1X</td>
</tr>
<tr>
<td>01</td>
<td>2X</td>
</tr>
<tr>
<td>10</td>
<td>4X</td>
</tr>
<tr>
<td>11</td>
<td>8X</td>
</tr>
</tbody>
</table>
Status Report

- Third and fourth byte in the control channel.
- **ReceiverReady** (RR) indicator (1-bit).
 - Asserted (1) when receiver deems that equalization training (for both the transmitter and receiver) is complete.
Training Pattern

- 64 bytes in length and transmitted at 10.3125Gbaud.
- Transmission order is left-to-right, top-to-bottom.

<table>
<thead>
<tr>
<th>Pattern Description</th>
<th>Pattern Example</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/2 Pattern</td>
<td>33 33 33 33 33 33 33 33</td>
<td>8 bytes</td>
</tr>
<tr>
<td>Positive Impulse</td>
<td>00 80 00</td>
<td>3 bytes</td>
</tr>
<tr>
<td>T Pattern</td>
<td>AA AA AA AA AA AA</td>
<td>5 bytes</td>
</tr>
<tr>
<td>“1” followed by $x^7 + x^6 + 1$ (all ones seed)</td>
<td>FE 04 18 51 E4 59 D4 FA 1C 49 B5 BD 8D 2E E6 55</td>
<td>16 bytes</td>
</tr>
<tr>
<td>T/2 Pattern</td>
<td>CC CC CC CC CC CC CC CC</td>
<td>8 bytes</td>
</tr>
<tr>
<td>Negative Impulse</td>
<td>FF 7F FF</td>
<td>3 bytes</td>
</tr>
<tr>
<td>T Pattern</td>
<td>55 55 55 55 55</td>
<td>5 bytes</td>
</tr>
<tr>
<td>“0” followed by $x^7 + x^6 + 1$ (all ones seed, inverted)</td>
<td>01 FB E7 AE 1B A6 2B 05 E3 B6 4A 42 72 D1 19 AA</td>
<td>16 bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64 bytes</td>
</tr>
</tbody>
</table>
Framing Algorithm

- The receiving framer is expected to implement a simple $\alpha-\delta$ framing algorithm.
 - Upon reset the LIP receiver goes to the OOF (Out-of-Frame) state.
 - The LIP receiver shall transition from the OOF state to the INF (In-Frame) state after finding the frame marker, one frame apart for α (2) consecutive frame times.
 - The LIP receiver shall transition from the INF state to the OOF state if the frame marker is not found during δ (5) consecutive frames.
Start-Up Protocol Highlights

- Local receiver adaptation process sends FIR tap weight updates to the remote transmitter via the coefficient update field.
 - The adaptation process itself is beyond the scope of the standard.
 - A variety of algorithms may be employed.

- When the local adaptation process determines that the local Tx and remote Rx are fully trained, it sets the ReceiverReady bit on outgoing training frames.
 - The state machine must see the ReceiverReady bit asserted three consecutive times before it concludes that the remote receiver is ready to receive data (no hair triggers).

- When the state machine determines that the local and remote receivers are ready to receive data, it sends a fixed number of training frames to ensure that the remote receiver properly detects the ReceiverReady bit.
State Diagram (1/3)

- **reset**: Condition that is true until such time as the power supply for the device has reached its specified operating region.
- **mr_train**: Asserted by system management to initiate training.
- **local_RR**: Asserted by the link initialization protocol state machine when rx_trained is asserted. This value is transmitted as the ReceiverReady bit on all outgoing training frames.
- **remote_RR**: The value of remote_RR shall be set to FALSE upon entry into the TRAIN_LOCAL state. The value of remote_RR shall not be set to TRUE until no fewer than three consecutive training frames have been received with the ReceiverReady bit asserted.
- **rx_trained**: Asserted when the transmit and receive equalizers have been optimized and the normal data transmission may commence.
- **loss_of_signal**: De-asserted when the presence of an electrical signal is detected at the receiver. This is not an indication of the quality of the received signal (loss_of_signal = FALSE does not guarantee the signal is valid, only that the peak-peak amplitude exceeds the specified value).
Timers
- \textit{wait_timer}: This timer is started when the local receiver detects that the remote receiver is ready to receive data. The local transmitter will deliver \textit{wait_timer} additional training frames to ensure that the remote receiver correctly detects the \textit{ReceiverReady} state. The value of \textit{wait_timer} shall be between 100 and 300 training frames.

Messages
- \texttt{TRANSMIT()}
 - \texttt{TRAINING}: Sequence of training frames. The coefficient update and status report fields are defined by receiver adaptation process.
 - \texttt{DATA}: Sequence of symbols as defined by the output of the ENCODE block.
reset +
loss_of_signal +
mr_train = TRUE

TRAIN_LOCAL
local_RR ← FALSE
TRANSMIT(TRAINING)

rx_trained = TRUE

TRAIN_REMOTE
local_RR ← TRUE
TRANSMIT(TRAINING)

remote_RR = TRUE

LINK READY
Start wait_timer
TRANSMIT(TRAINING)

wait_timer_done

SEND_DATA
TRANSMIT(DATA)
Timing Diagram

Device A

Receiver Rdy = 0
Training Frames
Equalizer Training Period
wait_timer
IDLE and DATA

Auto-Negotiation

Device B

Receiver Rdy = 0
Training Frames
Equalizer Training Period
wait_timer
IDLE and DATA

Receiver Rdy = 1
Training Frames

IEEE P802.3ap Task Force
January 24, 2005 (r1.4)
Loop Stability Considerations (1/2)

SEND CORRECTION

CORRECTED SYMBOLS

CORRECTED SYMBOLS AVAILABLE AT MDI

SEND CORRECTION

PROCESS CORRECTION

MEASURE CORRECTED SYMBOLS; COMPUTE NEXT CORRECTION

Control Channel Training Pattern Control Channel

MEDIA DELAY PROCESSING DELAY MEDIA DELAY
Loop Stability Considerations (2/2)

- As with any feedback loop, the loop delay must be managed to keep the loop stable.
- When the transmitter a sends correction to the link partner, there will be a predictable amount of time before the corrected symbols arrive at the receive MDI.
 - \(2 \times \text{MEDIA DELAY} + \text{PROCESSING DELAY}\)
 - MEDIA DELAY may be as high as 70 symbols at 10.3125Gbaud (based on Tyco Electronics Test Case 1).
 - PROCESSING DELAY should be bounded (value TBD).
- Receiver must wait at least this amount of time before processing input symbols and computing the next correction.
 - Additional time may be “bought” by sending training frames with all tap updates set to “Hold”.
10GBASE-KR Start-Up and Auto-Negotiation

- Auto-Negotiation and 10GBASE-KR start-up are de-coupled.
 - Auto-Negotiation, if enabled, precedes start-up.
 - If the 10GBASE-KR operating mode is selected, the start-up protocol immediately ensues.

- However, consideration needs to be given to parallel detection.
 - The parallel detection algorithm uses link_status = READY to determine the appropriate operating mode. However, link_status = READY implies the PCS is synchronized, and this cannot be achieved before start-up is completed.
 - It is not acceptable to require that the start-up protocol complete prior to parallel detection.

- Options:
 - Make auto-negotiation mandatory for 10GBASE-KR.
 - Base “link_status = READY” on training frame lock. For this option, it is necessary to guarantee that training frame lock cannot be achieved from auto-negotiation signaling.
Management

- Allocate MDIO registers in MMD = 1 (PMA/PMD) to support the 10GBASE-KR start-up protocol.
 - Provide visibility into start-up protocol operation for management and diagnostic purposes.
 - Support loop closure via an out-of-band control plane (in the event that the start-up protocol is disabled).
Management Register Set

- **Local / Remote Coefficient Update Registers (RO)**
 - Corresponds to the 16-bit coefficient update field in the training frame control channel (sourced by local adaptation process or received in a training frame).

- **Local / Remote Status Report Registers (RO)**
 - Corresponds to the 16-bit coefficient update field in the training frame control channel (sourced by local adaptation process or received in a training frame).

- **Transmit Finite Impulse Response Filter Register Set (R/W)**
 - 8-bit signed representation of the FIR tap weights.
 - Requires 4 registers to represent up to 7 taps.
 - Use remaining 8 bits to report supported FIR step size.

- **Additional Control/Status Bits**
 - Enable/Disable Training (maps to \(mr_\text{train} \) variable in state machine).

- **Register and bit locations to be assigned...**
Out-of-Band Loop Closure

- Example below shows how MDIO registers could support out-of-band loop closure (closure in only one direction shown).
Agenda

- Start-Up Protocol Wish List
 - Link Model
 - Training Frame Structure
 - Start-Up Protocol
 - Loop Stability
 - Auto-Negotiation
 - Management
- Conclusions
Conclusions

- A simple start-up protocol for 10GBASE-KR is proposed to support joint transmitter / receiver adaptation.
- Requirements for loop stability are defined, and the coefficient action “Hold” is identified as a means to guarantee stability.
- Relationship of training and parallel detection is examined:
 - Make auto-negotiation mandatory for 10GBASE-KR?
 - Base “link_status = READY” on training frame lock?
- Management registers to support start-up protocol are defined.
 - Register and bit assignments are TBD.
Thank You