TP3 Stressed Receiver Test System Progress Report

Jim McVey, Lew Aronson– Finisar

March 15, 2005

Introduction

- TP3 Comprehensive Stressed Receiver Test is Critical EDC Compliance Test.
- D1.1 Defines System with 4-Tap ISI Generator, Noise Loading and Optical to Electrical Converter.
- Practicality of Test and Achievable Accuracy of Impulse Response Generation is Critical
 - Errors in Impulse Generation Could Result in Significant Under- or Over Stress of Receiver.
 - If Errors are Large, Test IPRs Would Need to Be Less Than Worst Case
 Channel Responses to Avoid Overly Difficult Tests.
- This Work Describes First Results of Test System Development

4-Tap Noise & ISI generator

4-Tap ISI Generator Hardware

Composite Voltage vs Time Plot for 4 Tap ISI Generator

Generating Precursor Pulse by Weighted Addition of Present Measured Tap Responses

Unwanted Reflections Limit Current System Performance

- Very tight control of reflections required
 - Reflections 20 dB down in optical domain require 40 dB return loss (electrical power domain)
 - Requires high quality microwave components
- Main areas of reflections are:
 - Electronic variable attenuator
 - Attempt to control with fixed attenuators, but need enough attenuation and very high quality attenuators
 - Inside and between the power dividers
 - Connectorized, off-the-shelf power dividers are nearly 2 UI long.
 - Have evaluated several different types, and have (hopefully) a workable solution on order

Long Reflections from Attenuator Plane

Short Reflections Within Power Divider Network

Pulse Response

Channel 1, other channels similar

Page: 10

Eye diagrams of individual taps showing deterministic 'fuzz' and possibly eye closure due to short and long reflections

Precursor per 802.3aq D1.1

PSR = 24.3 dB, Target PIE-D = 4.82 dBo, Actual PIE-D = 4.86 dBo

Split-Pulse Symmetric per 802.3aq D1.1

PSR = 24.5 dB. Target PIE-D = 4.54 dBo. Actual PIE-D = 4.58 dBo

Post cursor per 802.3aq D1.1

PSR = 25.1 dB, Target PIE-D = 4.85 dBo, Actual PIE-D = 4.86 dBo

(no 7.5 GHz 4th BT RX filter)

Post cursor, the whole story including long reflections

Precursor Eye Diagram , No Source Noise

Calibration of Source Noise Using Histogram and Slow Square Wave

Precursor Eye Diagram with Source Noise

10G-BASE-LRM March 2005 Atlanta

Jim McVey / Lew Aronson

Frequency Domain Measurements

Reduced Bandwidth of emulated channel visible in impact on source noise

Rapid wiggles are caused by long reflections

- Reduce Reflections to Acceptable Levels:
 - Make Ripple Induced Eye Closure Small Compared to Noise Loading
 - Ensure Reflections Don't Generate Significant Errors in Impulse Shape
 - Ensure Reflections Do Not Result in Significant Long Delay Features
- Measure Accuracy of Generated Impulse Response
 - Calculate Resulting Error in PIE-D and/or Finite Equalizer Metric
- Add E/O Converter
 - Verify Accurate Impulse Response in Optical Domain, 3.5 dB ER,
 Desired Noise Loading Amplitude and Frequency Content.

Back Up Material

PIE-D Sensitivity versus tap weights

- PIE-D is surprisingly insensitive to errors in the tap weights
 - Analyzed assuming that the taps would be electrical attenuators specified by dB electrical power loss
 - Assume quantization of 0.125 dB, 0.25 dB, 0.5 dB and 1 dB

	D1.1	0.125 dB	0.25 dB	0.5 dB	1 dB
Precursor	5.091	5.102	5.072	5.163	5.095
Symmetric	4.761	4.760	4.753	4.766	4.740
Post Cursor	5.108	5.103	5.112	5.075	5.075

Split-Symmetric Eye Diagram , No Source Noise

Post Cursor Eye Diagram, No Source Noise

Rapid wiggles are caused by long reflections

Rapid wiggles are caused by long reflections

Rapid wiggles are caused by long reflections

Other possible implementations considered: Microcircuit

- Agilent HMMC-1002 DC to 50
 GHz GaAs attenuator
- Thin film substrate (sapphire or polished alumina)
- Needs PCB with DAC's to control attenuators
- Biggest risk is design of resistive elements (power dividers and pads)
- Still difficult to control magnitude of reflections, and although reflections length is reduced, it is still well beyond 1UI

Other possible implementations considered: Microcircuit with tapped delay line structure rather than power divider tree