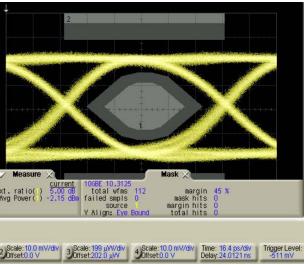
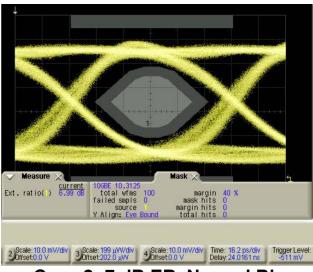
Waveform Capture Data for TP2 Penalty Test Development

Lew Aronson – Finisar Tom Lindsay - ClariPhy

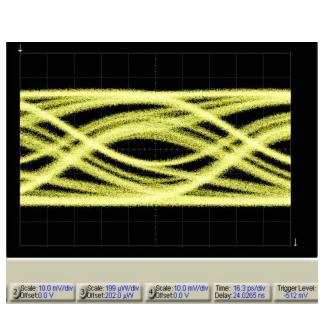
December 23, 2004

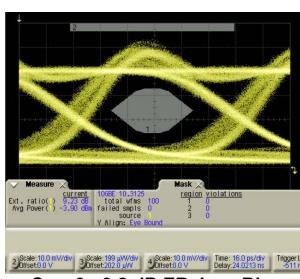

Source Information and Test Conditions

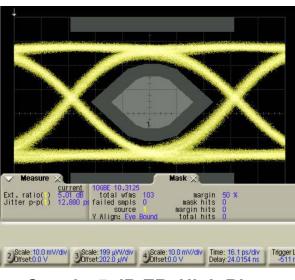
- All data is for a 10G FP source in module configuration (in TOSA driven by Laser Driver IC).
- Eye Diagrams and Averaged Pattern Capture are PRBS9 @ 10.3125 Gb/s
 - x⁹+x⁵ + 1, from ITU-T V.52
- All cases are ~ Room Temperature (laser probably ~ 35C)
- Waveform captures are 4050 points over a time range of 55 ns (~ 567 bits), Averaged over 16 captures.


Cases:

- Case 1: 'Normal' biasing conditions (35 mA average bias) 5 dB ER
 - Likely –LRM setup if no pre-emphasis
- Case 2: Same as Case 1 but higher modulation 7 dB ER
 - Chosen to show a small degree of overshoot, turn-on jitter
- Case 3: Same as Case 1 but very underbiased (25 mA,same modulation) 9.2 dB ER
 - Chosen to show much more overshoot, slower laser response and turn-on jitter.
- Case 4: Same as Case 1 but Laser Driver slowed down considerably
 - Chosen to show a very slow overall laser response or poor packaging
- Case 5: An even more extreme example of Case 4
 - Seems to show a very low bandwidth transmitter
- Case 6: High biasing conditions (45 mA average bias) 5 dB ER
 - Shows a particularly fast laser response

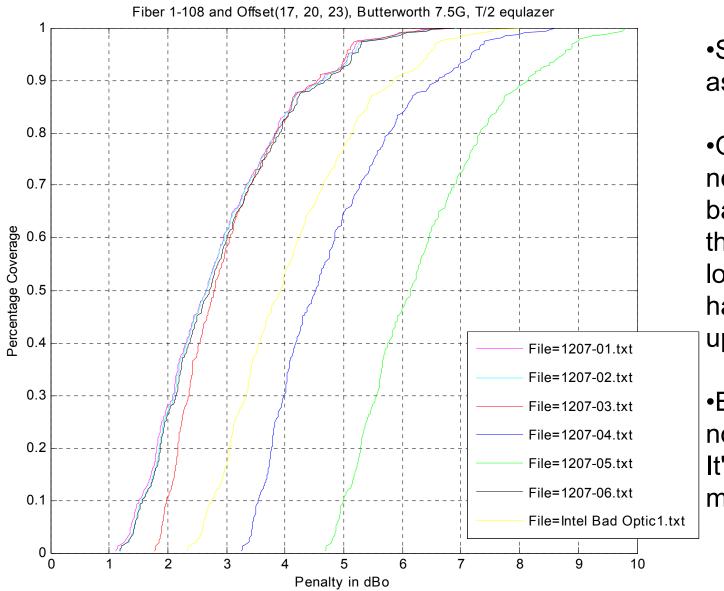

Eye Diagrams


Case 1: 5 dB ER, Normal Bias


Case 2: 7 dB ER, Normal Bias

Case 5: Case 1 + Very Slow Drive

Case3: 9.2 dB ER, Low Bias



Case6: 5 dB ER, High Bias

Case 4: Case 1 + Slow Drive

Penalty analysis

- •Slow lasers do not as well.
- •Overshoot has no negative effect with bad fibers, where things count. If you look closely, case 3 has a slight advanta up around 90%.
- BadOptic from Intended not plotted yet as eyeld.
 It's penalty is moderate.