

Progressing TWDP Follow-on from London

Norm Swenson & Tom Lindsay 23rd June, 2005

Goals for 6/23 call

- This work requires a very focused group of volunteers...
- Agree on list of required decisions
- Agree on work required for completion
- Brainstorm options, questions, tasks
 Is there any consensus?
- Assignments
 - ... to report back with findings and recommendations

Progressing TWDP - decisions required

- 1. Finite EQ length
 - One length or multiple?
 - Length value(s)?
- 2. SNR-based link closure metric
 - Should it be based on scaled/normalized power?
 - If so, to what?
 - If so, should it be automated?
 - Can SNR or distortion/penalty be traded with power?
- 3. Separate equalizability metric?
 - Do we need one? Can it predict implementation penalty or a cliff?
 - What should it be?
- 4. Data sequence
 - Sequence for "system" test?

TWDP brainstorming & work required

- For each decision required:
 - Brainstorm options
 - Identify questions
 - Identify specific steps (what work, who, by when, etc.) to answer questions and make choices
 - Analysis, measurements & presentations
 -debate, opinions...
 - Test/validate
- Completion
 - Determine specific limits for the standard
 - Determine impact to mask, etc.
 - Write detailed resolutions/changes to code, text, figures, etc.

- Status and options -

ClariPhy recommendations or preferences shown in blue

EQ length

- Currently very long (infinite), but straw poll in London recommended use of finite length
- Options
 - Finite 14,6 (same as Ewen max)
 - Others...
- Questions
 - How well can use of finite length help predict implementation penalties for other non-ideal receiver characteristics?
 - Does performance at one length correlate with other lengths?
- Tasks...

SNR-based metric (link closure)

- Currently
 - Fixed min power limit (OMA_min), and
 - Max TWDP; OMA is scaled to OMA_min
- Options
 - Unscaled SNR (+ min power), or
 - Max TWDP + min power
 - Also
 - Min power fixed *or* function of SNR or TWDP
 - Power and TWDP based on OMA or OMSD
- Questions
 - Would use of SNR have to scale signal-borne noise?
 - If needed, can accurate power measurement be automated?
- Tasks...

"Equalizability"

- Currently using only TWDP
- Options
 - Use finite length equalizer
 - Separate metric beyond link closure not required
 - Gamma
 - Scaled power? If so, to what?
 - Difference/rate of penalties vs. EQ length
 - Introduce threshold and/or timing offset(s)
 - Others?
- Questions
 - How well do these predict implementation penalty or a cliff?
- Tasks...

Data sequence for system test

- Currently using AnAi subpattern
- Options
 - Alternative subpatterns from AnAi or BnBi
- Questions
 - Does AnAi subpattern produce similar performance metrics as prbs9?
- Tasks...

Annex

Background

Issues with Reference Equalizer of Infinite Length

- Infinite length equalizer can be overly optimistic
 - Not practical or realizable
 - No problem with precursor channels
 - No problem with *very* long impulse response in channel
 - For example, an electrical reflection resulting in echo many bit periods after current bit
 - No problem equalizing nonlinear functions of pseudo-random sequences
 - These appear as delayed scaled versions of the original waveform
- While the infinite length equalizer can equalize these impairments, a reasonable finite length equalizer can have problems
 - This can be manifested as large implementation penalty

SNR, TWDP and OMA

- In addition to SNR-loss, many believe TWDP (and PIE-D) measure how difficult a signal is to equalize for practical DFEs
 - But is this true?
- In aronson_1_0105, pre-emphasis significantly reduced TWDP scores
 - Further analysis shows that decrease is caused in part by increased transmitted signal energy relative to normalized OMA (negative TFL in Swenson_05_05)
 - Given the same peak-peak power, a waveform with lower penalty can result in a lower slicer SNR
 - Decrease may also reflect reduction in ISI at equalizer input
 - Reduction of gamma in Swenson_05_05.pdf
- High OMA signal should perform better, but TWDP does not reflect that due to OMA normalization
- Since waveform is normalized to reference OMA, accurate measurement of OMA is required
 - "Challenged" by presence of normal distortions