The LPI client deasserts TXC and asserts IDLE on lanes 0-3 in order to make the Suggested Remedy.

The LPI client asserts TXC and asserts IDLE on lanes 0-3 in order to make the

This removes a typographical error that was making line 51 inconsistent with the previous paragraphs and Figure 46–7a.

When the PHY receives signals from the link partner to indicate transition out of the low power idle state it indicates this to the LPI client by deasserting RXC and returning to a normal interframe state.

Suggested Remedy.

When the PHY receives signals from the link partner to indicate transition out of the low power idle state it indicates this to the LPI client by asserting RXC and asserting IDLE on lane 0-3 to return to a normal interframe state.

This removes a typographical error that was making line 51 inconsistent with the previous paragraphs and Figure 46–7a.

When the PHY receives signals from the link partner to indicate transition out of the low power idle state it indicates this to the LPI client by deasserting RXC and returning to a normal interframe state.

Suggested Remedy.

When the PHY receives signals from the link partner to indicate transition out of the low power idle state it indicates this to the LPI client by asserting RXC and asserting IDLE on lane 0-3 to return to a normal interframe state.

This removes a typographical error that was making line 51 inconsistent with the previous paragraphs and Figure 46–7a.

The state machine should remain in RX_SLEEP when R_TYPE(rx coded) is not IDLE.

Specific change is on line 16/17 on the left side of the figure.

The self-loop from the "RX_SLEEP" state to itself will be removed.
The wording of the section is misleading.

74.7.4.8 FEC rapid block synchronization for Energy Efficient Ethernet (optional)

If the optional Energy Efficient Ethernet function is supported (see Clause 78) then during refresh and wake states the FEC decoder will be receiving deterministic frames to achieve rapid block synchronization. During these states the reverse gearbox of the remote FEC encoder will be receiving unscrambled data from the PCS sublayer via 16-bit FEC_UNIDATA.request primitive. PCS sublayer will be encoding /LI/ during the refresh state and /I/ during the wake state, which produces the deterministic FEC frame.

Suggested Remedy

If the optional Energy Efficient Ethernet function is supported (see Clause 78) then during wake state the FEC decoder will be receiving deterministic frames to achieve rapid block synchronization. During the wake state the reverse gearbox of the remote FEC encoder will be receiving unscrambled data from the PCS sublayer via 16-bit FEC_UNIDATA.request primitive. PCS sublayer will be encoding /I/ during the wake state, which produces the deterministic FEC frame.

Response

ACCEPT IN PRINCIPLE.

A change was made in Clause 49 and should have been reflected in 74 and was overlooked.

Replace "refresh and wake states" in the first sentence by "the wake state".

In the second sentence, replace "During these states" by "During the wake state".

In the second sentence, also delete: "/LI/ during the refresh state and"

The end result will be:

If the optional Energy Efficient Ethernet function is supported (see Clause 78) then during the wake state the FEC decoder will be receiving deterministic frames to achieve rapid block synchronization. During the wake state the reverse gearbox of the remote FEC encoder will be receiving unscrambled data from the PCS sublayer via 16-bit FEC_UNIDATA.request primitive. PCS sublayer will be encoding /I/ during the wake state, which produces the deterministic FEC frame.
This refers to Figure 24-8. The IDLE state has two arcs that have overlapping conditions. The arc that circles back to the IDLE state has the condition
\[\text{sentCodeGroup.indicate} \cdot \text{TX_EN}=\text{FALSE} \]

The arc going to the TX_SLEEP state has the condition
\[\text{sentCodeGroup.indicate} \cdot \text{TX_EN}=\text{FALSE} \cdot \text{TX_ER}=\text{TRUE} \cdot \text{TXD}[3:0]=\text{TX_LP_IDLE} \]

Suggested Remedy

Modify the condition on the arc going from IDLE back to IDLE from:
\[\text{sentCodeGroup.indicate} \cdot \text{TX_EN}=\text{FALSE} \]

to one that ANDs this condition with EEE not being operational on this branch.

This can be done by replacing the condition on the arc with a variable that has different values conditional on whether the PHY has EEE active or inactive.

Response

ACCEPT IN PRINCIPLE.

Delete the arc that goes from IDLE back to IDLE.

The state machine convention ensures that the state is maintained until an exit condition is met.