Comment Type: ER Comment Status: A
Change the front matter as per the MEC requirements
Suggested Remedy: As comment
Response: Response Status: C
ACCEPT.

Comment Type: ER Comment Status: A
It has been agreed with staff that where a subclause is inserted prior to the existing first subclause it is labelled [existing subclause - one level][a through z]. Where a subclause is inserted after an existing subclause - assuming it is not the last - the new subclause it is labelled [subclause number][a through z].

For example to insert two subclauses before 43.2.1 the subclauses would be numbered 43.2.a and 43.2.b. Two subclauses between 43.2.1 and 43.2.2 would be numbered 43.2.1a and 43.2.1b. Two subclauses added after the last subclause 43.2.2 would be numbered 43.2.3 and 43.2.4.

At the moment we are not consistent in IEEE P802.3ba and IEEE P802.3az. In some cases the draft isn't consistent with itself.
Suggested Remedy: Use consistent subclause insertion numbering including style guide and approach agreed with staff.
Response: Response Status: C
ACCEPT.

Comment Type: T Comment Status: A
The comparison document only shows added text (in blue). This means that deletions from the draft cannot easily be seen.
Suggested Remedy: Please show additions and deletions (in strikeout and red) in the comparison document as other projects have done.
Response: Response Status: C
ACCEPT IN PRINCIPAL.
The way document compare works in Frame, the file that shows deletions messes up all the numbering so it is not very useful.
The comparison document will be published. All substantive changes will be shown.
Straw poll of the task force showed one person is interested in seeing the comparison document showing deletions.
Some text still implies that a type 10BASE-Te MAU is not a type 10BASE-T one, but it needs to be for backwards compatibility in places like autonegotiation. 10BASE-Te should be treated as a subtype of 10BASE-T.

Suggested Remedy
In the title of Clause 14, change "and type 10BASE-Te" to "including type 10BASE-Te".

14.1.1 in the note say: "Support for both 10BASE-Te and non-10BASE-Te signal levels in a single device is not expected." Or you could use legacy 10BASE-T where you need to differentiate from 10BASE-Te.

14.1.1.3 - the first paragraph doesn't explicitly exclude 10BASE-Te. The paragraph needs language to exclude 10BASE-Te; either replace 10BASE-T with "10BASE-T except 10BASE-Te" or "legacy 10BASE-Te".

14.3. The additional sentence "This subclause also ..." is not needed since 10BASE-T includes 10BASE-Te when not otherwise specified.

14.3.1.2 the paragraph about insertion loss for a legacy 10BASE-T MAU needs to explicitly exclude 10BASE-Te.

This needs to be done for every time that there is a requirement that is different for 10BASE-Te. The paragraph near the beginning of 14.3.1.2 that contains the reference to Figure 14-7 is an example where it was done right.

In the title of Clause 14, change "and type 10BASE-Te" to "including type 10BASE-Te".

In the note say: "Support for both 10BASE-T and 10BASE-Te signal levels in a single device is not required." 14.1.1.3 - Change text on page 16, line 5 from: "The performance specifications of the 10BASE-T simplex ..." to: "The performance specifications of the 10BASE-T except 10BASE-Te simplex ..."

14.3 - Delete additional sentence "This subclause also defines the."

14.3.1.2 Change page 17, line 8 from: "For a type 10BASE-T MAU, insertion." to: "For a type 10BASE-T that is not a type 10BASE-Te MAU, insertion."

Change text on page 18, line 44 from: ". Figure 14-7 for 10BASE-T and." to: ". Figure 14-5 for 10BASE-T except 10BASE-Te and."

Change text on page 19, lines 12, 18 and 25 from: ". For 10BASE-T and." to: ". For 10BASE-T except 10BASE-Te and."

Change text on page 19, line 52 from: ". For a 10BASE-T MAU." to: ". For a 10BASE-T MAU that is not a 10BASE-Te MAU."

"data sequences for a type 10BASE-T MAU." to: "data sequences for a type 10BASE-T MAU that is not a type 10BASE-Te MAU."

Change text on page 18, line 44 from: ". Figure 14-7 for 10BASE-T and." to: ". Figure 14-5 for 10BASE-T except 10BASE-Te and."

There was a comment #10511 that was issued against the note in 14.1.1. I believe that the issue still exists with the note. "Expected" is defined as "considered likely or probable to happen or arrive." The use of the word reads with a level of uncertainty. Notes are used to call attention; therefore, it should contain stronger wording.

Suggested Remedy
Change to read:
Support for both 10BASE-T and 10BASE-Te in a single device is not required.

In the note say: "Support for both 10BASE-T and 10BASE-Te signal levels in a single device is not required."
Cl 14 SC 14.1.1.1 P 15 L 49 # 69

Law, David
3Com

Comment Type T Comment Status A
I believe that 10BASE-Te is a MAU and not a PHY. See subclause 14.1.1 'Overview' which states that 'This clause also specifies the functional, electrical, and mechanical characteristics of the Energy Efficient version of 10BASE-T, the type 10BASE-Te MAU, and one specific medium for use with that MAU.' 10BASE-T is also a MAU. A MAU is not the same as a PHY - see Figure 1-1 in IEEE Std 802.3-2008.

Suggested Remedy
Change 'A 10BASE-Te PHY interoperates with a 10BASE-T PHY if the minimum cabling requirements of a 10BASE-Te PHY are met.' to read 'A 10BASE-Te MAU interoperates with a 10BASE-T MAU if the minimum cabling requirements of a 10BASE-Te MAU are met. Also change subclause 78.1 (page 235, line 20) that reads 'In addition to the above, EEE defines a 10 Mb/s PHY (10BASE-Te) with reduced transmit amplitude requirements. The 10BASE-Te PHY is fully interoperable with 10BASE-T PHYs over 100 m of class D (Category 5) or better cabling as specified in ISO/IEC 11801:1995.' to read 'In addition to the above, EEE defines a 10 Mb/s MAU (10BASE-Te) with reduced transmit amplitude requirements. The 10BASE-Te MAU is fully interoperable with 10BASE-T MAUs over 100 m of class D (Category 5) or better cabling as specified in ISO/IEC 11801:1995.'

Response Response Status C
ACCEPT.

Cl 22 SC 22.2.1 P 22 L 5 # 71

Law, David
3Com

Comment Type TR Comment Status A
EEE requires the use of the MAC defined in Annex 4A.

Suggested Remedy
Change the text 'The definition of LPI signaling assumes the use of the MAC defined in Annex 4A.' to read 'Support for EEE requires the use of the MAC defined in Annex 4A.'

Please make the same change in subclause 35.2.1, 46.1.7 and 78.1.1.

Response Response Status C
ACCEPT IN PRINCIPLE.

Change the text 'The definition of LPI signaling assumes the use of the MAC defined in Annex 4A.' to read 'EEE capability requires the use of the MAC defined in Annex 4A.'

Editors to ensure that changes are made in clauses 22, 35, 46 and 78.

Cl 24 SC 24.1.1 P 31 L 26 # 98

Law, David
3Com

Comment Type ER Comment Status A
Footnote 5 seems to be marked as inserted text yet I don't seem to be able to find footnote 5 - and it should be at the bottom of this page.

Suggested Remedy
Provide footnote 5 at the bottom of this page.

Response Response Status C
ACCEPT.
Comment Type: T Comment Status: R

Maintenance request #1207 The objective 1) is correct as it is written.
The objectives are meant to serve as goals at the start of a project. Being able to run over UTP was important because there are more impairments due to noise, crosstalk, and EMC; compared to screened or shielded systems. So distinguishing UTP as a minimum objective is correct. It is the lowest common denominator.

I also don't believe you should change objectives that were true at the time.

Suggested Remedy
Reject maintenance request #1207

Response: REJECT.

See comment #107

Comment Type: T Comment Status: R

Maintenance request #1206 The objective d) is correct as it is written. The objective reflects what is in the TP-PMD standard which is what this clause uses for 100BASE-TX. The TP-PMD standard is specifically written to focus on Category 5 UTP and 150 ohm STP cabling, see Annex E of ANSI X3.263-1996.
The objectives are meant to serve as goals at the start of a project. Being able to run over UTP was important because there are more impairments due to noise, crosstalk, and EMC; compared to screened or shielded systems. So distinguishing UTP as a minimum objective is correct. It is the lowest common denominator.

I also don't believe you should change objectives that were true at the time.

Suggested Remedy
Reject maintenance request #1206

Response: REJECT.

The footnote was added to execute the result of Motion #2 of Sep. Interim Meeting, 2009
Refer to MR #1206 http://www.ieee802.org/3/maint/requests/revision_history.html
Footnote 5: ISO/IEC 11801 makes no distinction between shielded or unshielded twisted-pair cables, referring to both as balanced cables.

Comment Type: T Comment Status: A

According to Table 22-2 a binary value 0001 of receive nibble-wide Data signals (RXD), together with the de-assertion of RX_DV and the assertion of RX_ER on the MII is used to indicate "Assert LPI" (see page 26, line 10).

Suggested Remedy
Change '.. used to indicate "receive LPI", as ..' to read '.. used to indicate "Assert LPI", as ..'

Response: ACCEPT.
<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Comment</th>
<th>Response</th>
<th>Response Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24.2.3.4</td>
<td>E</td>
<td>A</td>
<td>A reference to subclause 45.2.3.9b would be better than to Table 45-1 which is the global register list and does not list individual bits.</td>
<td>SuggestedRemedy</td>
<td>Change the text ‘.. register 3.22 (refer to Table 45-1) shall ..’ to read ‘.. register 3.22 (see 45.2.3.9b) shall ..’.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACCEPT.</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24.2.4.4</td>
<td>TR</td>
<td>D</td>
<td>The IDENTIFY JK state has an exit vector with criteria "rx_bits[9:0] = /I/P/. This cannot happen in this state and thus the vector would never be used. In addition, the vector going to BAD SSD must be changed because an /I/P/ satisfies the criteria to enter that state which would cause a FALSE CARRIER indication.</td>
<td>SuggestedRemedy</td>
<td>This vector should come from the CARRIER DETECT state. In addition, change the criteria from CARRIER DETECT into BAD SSD to be rx_bits[9:5] = /I/ * rx_bits[4:0] <> /J/.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>REJECT.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>This comment was WITHDRAWN by the commenter.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Comment</th>
<th>Response</th>
<th>Response Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>28C</td>
<td>28C.12</td>
<td>T</td>
<td>A</td>
<td>This is a "pile on" to comment #20192. Annex 28C and Clause 45.2.7.13a and clause 45.2.7.14a require new EEE next pages and new message codes that add 1/2 second during autonegotiation. This is unnecessary time.</td>
<td>SuggestedRemedy</td>
<td>Use the existing NP and XNP to control advertising of BASE-T EEE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACCEPT IN PRINCIPLE.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See response to comment #73</td>
<td></td>
</tr>
<tr>
<td>28C</td>
<td>28C.12</td>
<td>TR</td>
<td>A</td>
<td>This is a pile on to 20192 against draft 2.1 Surely the whole point of adding XNPs for 10GBASE-T was to use them for this sort of configuration operation.</td>
<td>SuggestedRemedy</td>
<td>Please reconsider response to 20192</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACCEPT IN PRINCIPLE.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In favor of proposed resp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes: 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Abstain: 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See parnaby_02_1109.pdf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Add three bits in 55.6 for EEE capability, make these bits mandatory for 10GBASE-T EEE Reserve a bit and use bits U24, U23 and U22 instead of the U23, U22 and U21 in parnaby_02_1109.pdf</td>
<td></td>
</tr>
</tbody>
</table>
Cl 28C SC 28C.12 P 258 L 33 # 66
Kasturia, Sanjay Teranetics

Comment Type: TR Comment Status: A

This is a "pile on" to comment #20192. Annex 28C and Clause 45.2.7.13a and clause 45.2.7.14a require new EEE next pages and new message codes that add 1/2 second during autonegotiation. This is unnecessary time.

Suggested Remedy
Use the existing NP and XNP to control advertising of BASE-T EEE

Response: Response Status: C
ACCEPT IN PRINCIPLE.
See response to comment #73

Cl 28C SC 28C.12 P 258 L 33 # 66
Kasturia, Sanjay Teranetics

Comment Type: TR Comment Status: A

This says that 45.2.7.13a defines what is sent in bits U10:U0 so there are no remaining U field bits (which is the only field in the unformatted page).

The bits should all be defined in one place (45.2.7.13a) so that this doesn't need to be updated two places if another bit is used sometime. My comment on 15.2.7.13a would update it to cover all the bits.

This comment also applies to 73A.4

Suggested Remedy
Delete ", the remaining field bits....on receipt".

Response: Response Status: C
ACCEPT.
Change for 28C.12 and 73A.4.
See also comment #99

Cl 36 SC 36.2.5.1.3 P 75 L 30 # 79
Pillai, Velu Broadcom

Comment Type: TR Comment Status: A

Definition of code_sync_status should be same as what is there in 802.3-2008 for sync_stauts.

Suggested Remedy
A parameter set by the PCS Synchronization process to reflect the status of the link as viewed by the receiver.

Response: Response Status: C
ACCEPT.
Change for 28C.12 and 73A.4.
See also comment #99

Cl 36 SC 36.2.5.1.7 P 76 L 48 # 81
Pillai, Velu Broadcom

Comment Type: TR Comment Status: A

Description for tx_ts_timer, tx_tq_timer and tx_tr_timer starts as:
This timer is started when the PCS receiver enters...
It should be
This timer is started when the PCS transmitter enters..

Suggested Remedy

Response: Response Status: C
ACCEPT.

Cl 36 SC 36.2.5.1.7 P 76 L 48 # 81
Pillai, Velu Broadcom

Comment Type: TR Comment Status: A

Description for tx_ts_timer, tx_tq_timer and tx_tr_timer starts as:
This timer is started when the PCS receiver enters...
It should be
This timer is started when the PCS transmitter enters..

Suggested Remedy

Response: Response Status: C
ACCEPT.
Branches from LPI_IDLE_D near line 13:

On the branch from LPI_IDLE_D to RX_LINK_FAIL, change the condition from "rx_ts_timer_done" to "signal_detect = OK * rx_ts_timer_done". On the branch from LPI_IDLE_D to off-page node F, change the condition from "xmit != DATA * SUDI([K28.5])" to "signal_detect = OK * !rx_ts_timer_done * xmit != DATA * SUDI([K28.5])". On the branch from LPI_IDLE_D to LPI_K, change the condition from "xmit = DATA * SUDI + SUDI([K28.5])" to "signal_detect = OK * !rx_ts_timer_done * (xmit = DATA * SUDI + SUDI([K28.5]))".

Branches from LPI_K near line 19:

On the branches from LPI_K to off-page nodes D, F, and C as well as the branch back to LPI_IDLE_D, insert the condition "signal_detect = OK * <cond>" where <cond> is replaced by the previously-stated condition.

Branches from RX_WAKE near line 32:

On the branch to RX_WTF, insert the condition "signal_detect = OK * !(code_sync_status = OK + SUDI([K28.5]|EVEN)) * ..." into the condition for this branch. On the branch to RX_WAKE_DONE, insert the condition "signal_detect = OK * ..." into the condition for this branch.

Similarly, in branches from RX_WTF near line 36:

On the branch to RX_LINK_FAIL, insert the condition "signal_detect = OK * ..."); On the branch to RX_WAKE_DONE, insert the condition "signal_detect = OK * ..."); On the branch to RX_WAKE_DONE, insert the condition "signal_detect = OK * ...");

Response Response Status W

ACCEPT IN PRINCIPLE.

Use changes as suggested for branches from LPI_IDLE_D and LPI_K. Use the following for the other two:

Branches from RX_WAKE near line 32:

On the branch to RX_WTF, insert the condition "signal_detect = OK * ..."); On the branch to RX_WAKE_DONE, insert the condition "signal_detect = OK * ...");

SuggestedRemedy

When entering state RX_LINK_FAIL signal "rx_quiet" must be reset (rx_quiet <= FALSE; this would be an additional assignment to the already existing assignment "rx_lpi_active <= FALSE").

Response Response Status C

ACCEPT.

Similarly, in branches from RX_WTF near line 36:

On the branch to RX_LINK_FAIL, insert the condition "signal_detect = OK *

ACCEPT IN PRINCIPLE.

Use changes as suggested for branches from LPI_IDLE_D and LPI_K. Use the following for the other two:

Branches from RX_WAKE near line 32:

On the branch to RX_WTF, insert the condition "signal_detect = OK * ..."); On the branch to RX_WAKE_DONE, insert the condition "signal_detect = OK * ...");
<table>
<thead>
<tr>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Response</th>
<th>Response Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>A</td>
<td>ACCEPT</td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>A</td>
<td>ACCEPT IN PRINCIPLE</td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>A</td>
<td>ACCEPT</td>
<td></td>
</tr>
</tbody>
</table>

Comment: Exit out of RX_WAKE_DONE should be to H and not to G

Suggested Remedy:

Response:

Comment: To be consistent across all EEE PHYs, change the state name from START_RX_SLEEP to RX_SLEEP. Also on page 76, line 31.

If the editor decides to keep the name, then on page 76, line 28 change the name RX_SLEEP to START_RX_SLEEP.

Suggested Remedy:

Response: ACCEPT IN PRINCIPLE.

To be consistent across all EEE PHYs, change the state name from START_RX_SLEEP to RX_SLEEP. Also on page 76, line 31.

Comment: Missing rx_ipl_active <= FALSE inside LINK_FAILED state

Suggested Remedy:

Add the above.

Response: ACCEPT.
For 1000BASE-T EEE, the PHY can use 3 of the 4 pairs to provide a reliable indication of scrambler lock. If the PHY needs to encode LPI during training, then one of the pairs is needed to convey this information so that only 2 of the 4 pairs can effectively be used. This constraint results in a small but non-zero degradation in the robustness of the link-up process. Additionally, even if a PHY is allowed to encode LPI during training, the link cannot actually enter a low power state during this time. Thus, permitting an LPI command during training offers no real benefit yet results in a slight degradation in robustness. This small degradation in robustness can be eliminated by having the PHY ignore LPI requests during training.

Suggested Remedy

Explicitly prevent encoding loc_lpi_req during training. The changes required to accomplish this follow:

Introduce a new variable, loc_lpi_en, which in the PHY Control state diagram (Figure 40-15a) is set TRUE in the state "SEND IDLE or DATA" and is set FALSE in the states "SLAVE SILENT" and "SEND IDLE".

In the Local LPI Request state diagram (Figure 40-9), modify the transition condition into the state "LOC LPI REQ OFF" to be:

pcs_reset = ON + link_status != OK + loc_lpi_en = FALSE.

Document the communication between the PHY Control and the Local LPI Request blocks by updating the functional and reference diagrams and defining the PMA service primitive associated with the variable, loc_lpi_en.

A presentation will be submitted for review at the January 2010 interim meeting in New Orleans detailing the specific changes required.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line
Cl 45 SC 45.2.7.13a P 128 L 25 # 99
Thaler, Pat Broadcom

Comment Type TR Comment Status A

The bit assignments still aren't right. Bits 3 through 1 of the register should map to U3 through U1 of the U field. I.e. each bit in the register should map to the corresponding bit of the U field. This was agreed in the resolution of my comment 416 on the first ballot and in the response to 193 in the first recirculation.

This comment also applies to 45.2.7.14a which should use the same mapping.

Suggested Remedy

Change the mapping of bits 3 through 1 to U3 through U1 respectively in both tables.

I would also prefer that the resolution in response to 416 be fully implemented - the register bits 0 through 15 should map to U0 through U15 (all bits apply to Clause 73 and only bits 0 through 10 apply to Clause 28) with the unused values reserved. That allows the mapping for the register to U bits to be established now for when additional bits are added latter.

Response Response Status W
ACCEPT IN PRINCIPLE.

Change 3:1 to U3 through U1 to rectify editorial mistake implementing comment #193.
Make the change in both tables: 45-157a and 45-157b

Add a new paragraph after the current one in 45.2.7.13a:

Bits 10:0 of register 7.60 map to bits U10 through U0 respectively of the unformatted next page following a EEE technology message code as defined in 28C.12. Bits 15:0 of register 7.60 map to bits U15 through U0 respectively of the unformatted next page following a EEE technology message code as defined in 73A.4. Devices using Clause 28 autonegotiation may ignore bits defined for Clause 73 autonegotiation and devices using Clause 73 autonegotiation may ignore bits defined for Clause 28 autonegotiation.

Cl 45 SC 45.2.7.14a P 130 L 24 # 58
Grimwood, Michael Broadcom

Comment Type TR Comment Status A

The next page bit number references don't match up with the EEE link partner ability register bit numbering as was specified in the resolution to Comment #193 against Draft 2.1 at the November Plenary.

Also, since this refers to register 7.61 the bit designations need to be changed from 7.60.x to 7.61.x.

Suggested Remedy

In table 45-157b,

Change all eight occurrences of "7.60.3" to "7.61.3"

For 7.60.3 (7.61.3) change next page bit number from "U2" to "U3"
For 7.60.2 (7.61.2) change next page bit number from "U1" to "U2"
For 7.60.1 (7.61.1) change next page bit number from "U0" to "U1"

Response Response Status C
ACCEPT.

Cl 46 SC 46.4a P L # 77
Parnaby, Gavin Solarflare Communicat

Comment Type TR Comment Status A

TX_EN, TX_ER and TXD<7:0> are not the correct names for 10G.
RX_EN, RX_ER and RXD<7:0> are not the correct names for 10G.

This seems to be a copy/paste error from the GMII clause.

Suggested Remedy

Update the names and description to use TXD/TXC, RXD/RXC.

Response Response Status C
ACCEPT IN PRINCIPLE.

Change the names. Also change the reference from 35.2.1.1 to 46.1.7.
The MAC should be prevented from requesting a transition into LPI within 1 ms of sending or receiving fault signaling, to prevent LPI requests occurring during PCS_Test while the PHY is retraining. This would prevent any frames being lost during LPI transitions following PCS_Test.

The current text states that LPI requests should be prevented unless the link has been operational for at least 1 second, but this only traps the case when the link retrains after autoneg.

Suggested Remedy
Add text stating that transitions to LPI should be prevented within 1 ms of sending or receiving fault signaling.

Response
Response Status C
REJECT.

There is already a restriction on LPI dependent on link state (46.1.7). Additional restrictions are not necessary and have no effect on frame loss.
A mode is required where a XAUI link supports LPI signalling, but does not support the QUIET/REFRESH cycling.

Suggested Remedy
Specify an MDIO bit field XAUI_EEE_QUIET_ENABLE to determine if QUIET state is support. If TRUE, transmit will turn off tx_mode is QUIET. If FALSE, transmit will not turn off if tx_mode is QUIET.

Response
ACCEPT IN PRINCIPLE.

This is already defined in Clause 45 - see register bits 4.20.0 (capability) and 4.0.9 (enable).

This needs to be reflected in the text of this clause:

An XGMII Extender with the optional Energy Efficient Ethernet (EEE) capability may enter a low power state to conserve energy during periods of low link utilization. **The ability to support transition to a low power state is indicated by register 4.20.0 (for a PHY XS) or 5.20.0 (for a DTE XS). Transition to the low power state is enabled by register 4.0.9 (for a PHY XS) or 5.20.0 (for a DTE XS).** The assertion of Low Power Idle (LPI) at the XGMII is encoded in the transmitted symbols. Detection of LPI encoding in the received symbols is indicated as LPI at the XGMII. When LPI is received, an Energy Efficient XGMII Extender sends sleep symbols, then, **if enabled**, ceases transmission and deactivates XAUI transmit signals to conserve energy. When the receiver sees the sleep symbols it transitions to a quiet state. The XGMII Extender periodically transmits during the quiet period to allow the attached XGMII Extender to refresh its receiver state (e.g. timing recovery, adaptive filter coefficients) and thereby track long term variation in the timing of the link or the underlying channel characteristics. If, during the quiet or refresh periods, normal inter-frame idle is asserted at the XGMII, the XGMII Extender re-activates transmit functions and initiates transmission. This transmission will be detected by the attached XGMII Extender, causing it to also exit the low power state.

In all text and figures, where the word represents a value or state, replace:
"true" with "TRUE"
"false" with "FALSE"

Response
ACCEPT.

The draft is not addressing the situation in which how a transmitter will handle an LPI request if the link partner is transmitting Local fault.

Suggested Remedy
Michael Grimwood is expected to address this problem for 10GBASE-T PHYs through a presentation. Either the 10GBASE-R PHY should adopted a similar solution or there is a need for discussing this issue separately.

Response
ACCEPT IN PRINCIPLE.

This is handled in the RS. See response to comment #74.
Responses

IEEE P802.3az D2.2 Energy Efficient Ethernet comments

Cl 49 SC 49.1.5 P159 L33 # 46
Brown, Matt Applied Micro (AMCC)

Comment Type TR Comment Status D

Suggested Remedy

Provide specification for EEE service primitives:
ENERGY_DETECT.indication(energy_detect) -- equate to energy_detect variable
TX_MODE.request(tx_mode) -- equate to tx_mode variable
RX_MODE.request(rx_mode) -- equate to rx_mode variable
RX_LPI_ACTIVE.request(rx_lpi_active) -- equate to rx_lpi_active variable

Proposed Response REJECT.

This comment was WITHDRAWN by the commenter.

The primitive definitions are in Clause 51. As they are for all of the inter-sublayer interfaces (such as tx_data).

Cl 49 SC 49.2.13.2.2 P164 L22 # 51
Brown, Matt Applied Micro (AMCC)

Comment Type T Comment Status A

The energy_detect variable state is determined from energy_detect primitive from FEC and/or PMA. The primitive has the values OK and FAIL, whereas the energy detect variable is expected to have the values TRUE and FALSE. Redefine energy_detect variable and update LPI Receive state diagram (Figure 49-17).

Suggested Remedy

Change variable name from energy_detect to energy_detect_ok. Make changes throughout section to references to this variable (not the primitive) including Figure 49-17.

Change definition of energy_detect_ok to...
A Boolean variable indicating when the PMD detects signal energy. The variable is set to TRUE when the energy_detect primitive indicates OK and is set to FALSE when the energy_detect primitive indicates FAIL.

Proposed Response Response Status C

ACCEPT IN PRINCIPLE.

See also comments #4 & #5 (Clause 51).

The energy_detect variable that is defined and used in this clause is boolean, therefore no change is needed to Clause 49. However, the commenter correctly identified the error in Clause 51 that is remedied by comment #4 & #5.

Cl 49 SC 49.2.13.2.2 P165 L19 # 55
Brown, Matt Applied Micro (AMCC)

Comment Type T Comment Status A

All variables here are specific to EEE based on sentence on line 20.

Suggested Remedy

Replace "For EEE capability, this" with "This".

Response Response Status C

ACCEPT.

Cl 49 SC 49.2.13.2.5 P165 L34 # 80
Pillai, Velu Broadcom

Comment Type TR Comment Status A

Timer description for tx_ts_timer, tx_tq_timer, tx_tr_timer and tx_tw_timer states
This timer is started when the PCS's receiver.
change it to
This timer is started when the PCS's transmitter.

Suggested Remedy

Response Response Status C

ACCEPT.
This comment was WITHDRAWN by the commenter.

It is not clear that the two state machines need to be "synchronized." The transmit state machine will continue to send LPI or IDLE according to the state of the XGMII. The LPI transmit state machine will control tx_quiet for sleep, refresh and wake phases.

Incorporate TX_L and TX_WN states similar to Clause 55 Figure 55-15a.

Suggested Remedy:

Create variables:
- `tx_lpi_active`: "A boolean variable set to TRUE when PHY is in LPI mode and set to FALSE when PHY is not in LPI mode."
- `tx_lpi_req`: "A boolean variable set to TRUE when PHY client is requesting LPI and is otherwise set to FALSE."

Copy definitions of LPBLOCK_T and IBLOCK_T from Clause 55.

In Figure 49-14:

- In state TX_INIT add line "tx_lpi_req=FALSE"
- In state TX_LI add lines "tx_coded=LPBLOCK_T" "tx_lpi_req=TRUE"
- Delete transitions: TX_LI to TX_C
- Add state TX_W with lines: "tx_lpi_req=FALSE" "tx_coded=IBLOCK_T"
- Add transitions as follows:
 - TX_LI to TX_W: !(T_TYPE(tx_raw)=LI)
 - TX_W to TX_C: !(tx_lpi_active)*(T_TYPE(tx_raw)=C)
 - TX_W to TX_E: !(tx_lpi_active)*(T_TYPE(tx_raw)=(E+D+S+T))

In Figure 49-16:

- In TX_ACTIVE add line "tx_lpi_active=FALSE"
- In TX_SLEEP add line "tx_lpi_active=TRUE"
- Replace all instances each as follows: "T_TYPE(tx_raw)=LI" with "tx_lpi_req"
- Replace all instances each as follows: "T_TYPE(tx_raw)=LI" with "!(tx_lpi_req)"

Proposed Response:

ACCEPT IN PRINCIPLE.

Change condition to:
- `rx_block_lock*(block_lock=rx_block_lock)*R_TYPE(rx_coded)=LI`

Change transition criteria to:
- `rx_block_lock*(block_lock=rx_block_lock)*R_TYPE(rx_coded)=LI`
Comment Type: T Comment Status: R LATE

When the scrambler is disabled - csr_bypass_enable=true and in states when the transmitter bypass the scrambler - scrambler_bypass = TRUE - (as part of refresh and wakeup) the transmit data will should always be /I/ (idle) pattern.

As the receiver will not be able to receive data on those state and the scrambler bypass is used to achieve fast FEC lock - defining a single data pattern will simplify the lock mechanism significantly.

Suggested Remedy:
In figure 49-16 states TX_REF_SCR_ON and TX_WAKE_SCR_BYPASS add tx_mode = IDLE

Response: Response Status: C

REJECT.

When tx_mode=DATA and the state is TX_WAKE_SCR_BYPASS, the transmitted data will always be /I/ so the change requested in the suggested remedy is not required.

In state TX_REF_SCR_ON the data may be /I/ or /LI/ depending on what the MAC is asserting.

Comment Type: TR Comment Status: A

The transmit LPI state diagram controls tx_mode which disables the transmitter when true.

This should say

The transmit LPI state diagram controls tx_mode which disables the transmitter when it is set to quiet.

Suggested Remedy:

Response: Response Status: C

ACCEPT IN PRINCIPLE.

In addition to the change called out in the comment, change the assignment for tx_mode to ALERT in state TX_ALERT

Comment Type: TR Comment Status: A

After signal changes from ALERT to DATA, the energy_detect may possibly indicate no energy. The purpose of using the ALERT signal was to provide a higher energy signal so that we may energy_detect threshold higher to prevent false energy detect from noise.

As a result, when in RX_WAKE and RX_WTF states, it is very possible and expected that energy_detect will go FALSE before block lock is achieved.

Since energy_detect is VERY reliable with the ALERT signal, a transition to RX_WAKE indicates either a REFRESH or WAKE signal not a false detection of noise or ringing.

Suggested Remedy:
Remove the following transitions:
RX_WAKE to RX_QUIET
RX_WTF to RX_QUIET

Response: Response Status: C

ACCEPT IN PRINCIPLE.

Remove the RX_WAKE to RX_QUIET transition.

The RX_WTF to RX_QUIET is required for graceful recovery of a refresh failure and will not be removed.

Comment Type: TR Comment Status: R

It says that if EEE is supported LPI characters may be transmitted and if EEE is not supported then LPI characters are treated as errors. If EEE is supported, but not enabled as a result of AN, how shall LPI characters be treated. Does supported mean implemented and enabled?

Suggested Remedy:
Clarify what is meant by supported and/or clarify what to do if EEE is implemented, but not enabled.

Response: Response Status: C

REJECT.

AN is used to exchange capabilities. If a device indicates that it is "not capable" then it does not support the function. There is no need to clarify the case where a device does support the function but pretends not to.
Response Status: C

Comment Type: T

Comment Status: R

Note clear what "this option" is.

Suggested Remedy

"This option" clearly refers to the option described in the previous sentence.

Response Status: C

Brown, Matt Applied Micro (AMCC)

Comment Type: T

Comment Status: R

Suggested Remedy

"Low Power Idle (LPI) is an option" to "Low Power Idle (LPI) control characters."

Response Status: C

REJECT.

The sentence is clear. The ability to transmit or receive Low Power Idle (LPI) is an option.

Response Status: C

Brown, Matt Applied Micro (AMCC)

Comment Type: E

Comment Status: R

For consistency, change /LPI/ name to match name in Clause 55 (page 188, line 18).

Suggested Remedy

LANP "LPI" to "lp_idle".

Response Status: C

REJECT.

No change to clause 49. See comment #10 for decision on Clause 55.

Response Status: C

Fix the PICS appropriately.

Comment Type: TR

Comment Status: A

Arrow head for TX_ACTIVE back to TX_ACTIVE needs to touch the vertical line.

Suggested Remedy

ACCEPT.
<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>Fig</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>49</td>
<td>49-16</td>
<td>169</td>
<td>24</td>
<td>91</td>
</tr>
</tbody>
</table>

Comment Type TR **Comment Status** A

Either change all the 1usec timer name to one_us_timer or one_us_timer

Suggested Remedy

Response

Response Status C

Accept In Principle.

<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>Fig</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>49</td>
<td>49-17</td>
<td>170</td>
<td>46</td>
<td>54</td>
</tr>
</tbody>
</table>

Comment Type TR **Comment Status** A

Inside TX_REFRESH state change tx_mode <= data to tx_mode <= DATA

Suggested Remedy

Response

Response Status C

Accept In Principle.

Response

Response Status C

Remove the RX_SCR_BYPASS state and all the transitions to and from it from Fig 49-17

Replace the 2nd paragraph of 74.5.1.8 with the following:

When rx_lpi_active is TRUE and rx_mode is set to DATA, Start a 30usec hold off timer and enable the FEC Rapid block lock mechanism, which will attempt to determine the FEC start of block location based on the deterministic pattern. When the rapid block lock is locked, the determined start of block location is used as the FEC lock state diagram candidate start of block location until the rapid block lock loses lock. Assuming the rapid block lock determined the correct start of block location, the FEC lock state diagram will achieve lock without requiring subsequent slips. The rapid block lock mechanism is implementation dependent and outside the scope of this standard. FEC sub layer will precluded from asserting SIGNAL_OK until one of the following two events occurs:

1. Two 65b payload blocks after the transition from deterministic FEC block to normal scrambled FEC block.
2. Expiration of the 30usec hold off timer
Comment Type: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line

Cl 49 SC Fig 49-17 P 170 L 47 # 62
Pillai, Velu Broadcom
Comment Type: TR Comment Status: A
one_uS_timer is used in TX LPI and RX LPI state diagrams. It is better to use different names for these timers to avoid confusion and to follow the usual practice in IEEE standards.
SuggestedRemedy
Suggestion is to change the one on Fig 49-16 to be tx_one_uS_timer and the one on fig 49-17 to be rx_one_uS_timer. And add appropriate descriptions under 49.2.13.2.5
Response
 Response Status: C
 ACCEPT IN PRINCIPLE.
 Use tx_one_us_timer, rx_one_us_timer

Cl 49 SC Fig 49-17 P 170 L 9 # 87
Pillai, Velu Broadcom
Comment Type: TR Comment Status: A
Arrow heads for RX_ACTIVE to RX_ACTIVE and RX_SLEEP to RX_ACTIVE are floating.
SuggestedRemedy
Fix the diagram
Response
 Response Status: C
 ACCEPT.

Cl 49 SC Figure 49-17 P 170 L 9 # 64
Horner, Rita Avago Technologies
Comment Type: ER Comment Status: A
RX_ACTIVE, the transition with the condition "block_lock != rx_block_lock" goes nowhere. There is a missing connectin to the right of the Figure 49-17.
SuggestedRemedy
Draw in a feedback line to the RX_ACTIVE state, which matches the earlier D2.2 version of the diagram.
Response
 Response Status: C
 ACCEPT.

Cl 51 SC 52.2.6.1 P 176 L 6 # 4
Brown, Matt Applied Micro (AMCC)
Comment Type: T Comment Status: A
Condition for energy_detect=OK is not specified.
SuggestedRemedy
Change description to:
The energy_detect parameter takes on one of two values: OK or FAIL. A value of OK indicates that the PMA detects a signal. A value of FAIL indicates that the PMA does not detect a signal. A value of OK does not guarantee that a valid signal is being presented to the PMA client.
Response
 Response Status: C
 ACCEPT IN PRINCIPLE.
 See comment #5 for response.
Condition for energy_detect=OK is not specified. Nor is it defined where the states come from.

Since PMA_ENERGY_DETECT.indication is identical to PMD_SIGNAL.indication, the intermediate energy_detect variable/signal is not required.

Suggested Remedy
Change description of PMA_ENERGY_DETECT.indication(energy_detect) to:
"The energy_detect parameter takes on one of two values OK or FAIL as indicated by PMD_SIGNAL.indication(SIGNAL_OK). A value of OK indicates that the PMD detects a signal. A value of FAIL indicates that the PMD does not detect a signal. A value of OK does not guarantee that a valid signal is being presented to the PMA client."

Change when generated as follows:
The PMA generates this primitive whenever the PMD_SIGNAL.indication(SIGNAL_OK) primitive is received.

ACCEPT IN PRINCIPLE.

See also comment #4

The condition for OK needs stating and the relation between signal-ok and energy_detect should be stated. However the energy_detect is boolean. Change the paragraph as follows:

The energy_detect parameter is boolean and reflects the state of the SIGNAL_OK received from the PMD. A value of TRUE indicates that the PMA is receiving a signal from the PMD, reflecting that PMD_SIGNAL.indication is indicating OK. A value of FALSE indicates that the PMA is not receiving a signal from the PMD, reflecting that PMD_SIGNAL.indication is indicating FAIL. Note that a value of TRUE does not guarantee that a valid signal is being presented to the PMA client.

Comment Type: T Comment Status: A

Add the 10GBASE-T ad hoc output (link monitor and fast retrain capabilities) to the draft.

Suggested Remedy
As comment.

Response Response Status: C
ACCEPT IN PRINCIPLE.

In Figure 55-27a, replace PMA_alert_indicate with RX_LPI_ACTIVE to fix a typographical error in parnaby_01_0110.pdf

The phrase "LPI transmit mode" is used to describe or specify two different spans. In one context, it refers to the time from the beginning of SLEEP to the end of WAKE. In another, it refers to the time from the end of SLEEP to the beginning of ALERT. The starting point is also described as starting when Li is first received on the XGMII.

Suggested Remedy
Create a unique phrase to describe each epoch and replace the phrases appropriately.

Response Response Status: C
ACCEPT IN PRINCIPLE.

The editor believes that the only text that needs to be changed is the definition of tx_lpi_active and tx_lpi_qr_active in 55.5.3.5.2.2.

In other cases the text states that the transition to the LPI tx mode begins when Li is first received on the XGMII; this is accurate.

Change the tx_lpi_active and tx_lpi_qr_active definitions as follows:

tx_lpi_active is TRUE during the LPI transmit mode and during transitions to and from the LPI transmit mode (i.e. at any time when the PHY is transmitting sleep, alert, wake or quiet-refresh signaling).

tx_lpi_qr_active is TRUE during the LPI transmit mode (i.e. during quiet-refresh signaling).
<table>
<thead>
<tr>
<th>Cl 55</th>
<th>SC 55</th>
<th>P 179</th>
<th>L 9</th>
<th>#</th>
<th>Brown, Matt</th>
<th>Applied Micro (AMCC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment Type</td>
<td>Comment Status</td>
<td>SuggestedRemedy</td>
<td>Response</td>
<td>Response Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>R</td>
<td>The referenced adhoc proposal recommends inclusion of counters to track the number of times a fast retrain is invoked. By the same logic, a counter for normal re-trains is also required.</td>
<td>REJECT.</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuggestedRemedy</td>
<td>Create a new counter normal_retrain_counter. Definition: "Counts the number of times a normal re-train occurs. The counter is increment each time the SILENT state in Figure 55-24 is entered. The counter is reset when read or when entering the DISABLE_10GBASE-T_TRANSMITTER state in Figure 55-24. The counter is readable in MDIO register x.x.”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment Type: E Comment Status: A

Comment: "link system" should be "link partner system"

SuggestedRemedy: Change "local and link system" to "local and link partner system"

Response

Response Status: C

ACCEPT.

<table>
<thead>
<tr>
<th>Cl 55</th>
<th>SC 55.1.3</th>
<th>P 179</th>
<th>L 49</th>
<th>#</th>
<th>Brown, Matt</th>
<th>Applied Micro (AMCC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment Type</td>
<td>Comment Status</td>
<td>SuggestedRemedy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>A</td>
<td>SLEEP may be immediately followed by either REFRESH or QUIET. Replace: Following these frames the link partner ceases transmission and is quiet. With: Following these frames the link partner begins a QUIET/REFRESH cycle, where the link is normally quiet.</td>
<td>ACCEPT IN PRINCIPLE.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response

Response Status: C

Replace:
Following these frames the link partner ceases transmission and is quiet.
With: Following these frames the link partner begins a QUIET/REFRESH cycle.

<table>
<thead>
<tr>
<th>Cl 55</th>
<th>SC 55.2.2.10.1</th>
<th>P 185</th>
<th>L 45</th>
<th>#</th>
<th>Brown, Matt</th>
<th>Applied Micro (AMCC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment Type</td>
<td>Comment Status</td>
<td>SuggestedRemedy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>A</td>
<td>The rx_lpi_active primitive is inconsistently defined. It says that it takes on the value in SM in Figure 16 (TRUE or FALSE) and defines to possible values as ACTIVE and NOT_ACTIVE. Change "ACTIVE" to "TRUE". Change "NOT_ACTIVE" to "FALSE".</td>
<td>ACCEPT.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response

Response Status: C

ACCEPT.

<table>
<thead>
<tr>
<th>Cl 55</th>
<th>SC 55.2.2.9</th>
<th>P 185</th>
<th>L 12</th>
<th>#</th>
<th>Parnaby, Gavin</th>
<th>Solarflare Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment Type</td>
<td>Comment Status</td>
<td>SuggestedRemedy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>A</td>
<td>alert_detect and pma_alert_indicate are used throughout the clause but both names refer to the same signal. Choose one name and use it throughout the clause.</td>
<td>ACCEPT.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response

Response Status: C

ACCEPT.
Comment Type: T Comment Status: A
The lpi_tx_mode variable is ignored specifically when the PHY is not in the PCS_Data state in the PHY control state diagram (Figure 55.24).

Suggested Remedy:
Change:
"During PMA training the lpi_tx_mode variable is ignored."
to:
"During PMA training (PHY is not in PCS_Data state) the lpi_tx_mode variable is ignored."

Response: Response Status: C
ACCEPT IN PRINCIPLE.
"When the PHY is not in the PCS_Data state the lpi_tx_mode variable is ignored."

Comment Type: T Comment Status: A
quiet-refresh ends when any non-LI block is detected. There is no longer block error detection.

Suggested Remedy:
Change:
"The quiet-refresh cycle is repeated until IDLE codewords are detected at the XGMII."
to:
"The quiet-refresh cycle is repeated until LP_IDLE blocks are no longer detected at the XGMII."
Delete:
"The PHY will also transition back to the normal operation mode if an error condition occurs. This error condition is defined as the detection of any characters other than LP_IDLE or IDLE at the XGMII."

Change:
"After the alert signal the PCS completes the transition from LPI mode to normal mode by sending a wake signal which is composed of lpi_wake_time LDPC frames composed of IDLE 64B/65B blocks if an error condition has not been detected."
to:
"After the alert signal the PCS completes the transition from LPI mode to normal mode by sending a wake signal which is composed of lpi_wake_time LDPC frames composed of IDLE 64B/65B blocks."
Delete:
"The wake signal contains LDPC frames composed of local fault 64B/65B blocks if an error condition has been detected."

Response: Response Status: C
ACCEPT.

Comment Type: E Comment Status: A
For consistency, change /LI/ name to match name in Clause 49 (page 160, line 9).

Suggested Remedy:
Change "lp_idle" to "LPI".
Alternately, change Clause 49 "LPI" to "lp_idle".

Response: Response Status: C
ACCEPT IN PRINCIPLE.
Change "lp_idle" to "LPI".
Most of the clean-up of terminology for LPI and EEE has been done, but there are still a few cases where the EEE capability is referred to as low power idle.

in the state machine definitions of clause 55, "When the low power idle function is <not> supported," appears a number of times including in 55.3.5.2.4 Functions where there is no low power idle function. These should all refer to EEE which is the name of the optional capability.

Suggested Remedy

If low power idle is not supported should be "If EEE is not supported". "the low power idle function" should be "EEE"

Check for any other instances of supported being applied to low power idle or LPI and correct. LPI is the signal and LPI mode is the state where that signal is used. EEE is the optional capability.

Response

Response Status W

ACCEPT IN PRINCIPLE.

"If low power idle is not supported" should be "If EEE capability is not supported". "the low power idle function" should be "EEE capability"

Also make changes on page 179, 195, 196, 206.

Comment Type E **Comment Status** A

Change "PCS_Status=OK is asserted" to "PCS_Status is set to OK".

Note that PCS_Status primitive uses OK and NOT_OKAY. The pcs_status variable in the PHY control state diagram (Figure 55-24 in 802.3-2008). However, the pcs_status variable definition (section 55.3.6.1 in 802.3-2008) specifies values TRUE and FALSE.

Suggested Remedy

Change "PCS_Status=OK is asserted" to "PCS_Status is set to OK".

Change instance on Page 191, line 6, as well.

Response

Response Status C

ACCEPT.

Comment Type T **Comment Status** A

clarify "long training sequence"

Suggested Remedy

Replace "long training sequence" with "training sequence without periodic re-initialization".

Response

Response Status C

ACCEPT IN PRINCIPLE.

Replace "long training sequence" with "training sequence without periodic re-initialization".

Comment Type E **Comment Status** A

Change "PCS_Status=OK is asserted" to "PCS_Status is set to OK".

Note that PCS_Status primitive uses OK and NOT_OKAY. The pcs_status variable in the PHY control state diagram (Figure 55-24 in 802.3-2008). However, the pcs_status variable definition (section 55.3.6.1 in 802.3-2008) specifies values TRUE and FALSE.

Suggested Remedy

Change "PCS_Status=OK is asserted" to "PCS_Status is set to OK".

Change instance on Page 191, line 6, as well.

Response

Response Status C

ACCEPT.

Comment Type E **Comment Status** A

Change "PCS_Status=OK is asserted" to "PCS_Status is set to OK".

Note that PCS_Status primitive uses OK and NOT_OKAY. The pcs_status variable in the PHY control state diagram (Figure 55-24 in 802.3-2008). However, the pcs_status variable definition (section 55.3.6.1 in 802.3-2008) specifies values TRUE and FALSE.

Suggested Remedy

Change "PCS_Status=OK is asserted" to "PCS_Status is set to OK".

Change instance on Page 191, line 6, as well.

Response

Response Status C

ACCEPT.

Comment Type T **Comment Status** A

clarify "long training sequence"

Suggested Remedy

Replace "long training sequence" with "training sequence without periodic re-initialization".

Response

Response Status C

ACCEPT IN PRINCIPLE.

Replace "long training sequence" with "training sequence without periodic re-initialization".

Comment Type E **Comment Status** A

Change "PCS_Status=OK is asserted" to "PCS_Status is set to OK".

Note that PCS_Status primitive uses OK and NOT_OKAY. The pcs_status variable in the PHY control state diagram (Figure 55-24 in 802.3-2008). However, the pcs_status variable definition (section 55.3.6.1 in 802.3-2008) specifies values TRUE and FALSE.

Suggested Remedy

Change "PCS_Status=OK is asserted" to "PCS_Status is set to OK".

Change instance on Page 191, line 6, as well.

Response

Response Status C

ACCEPT.

Comment Type E **Comment Status** A

Change "PCS_Status=OK is asserted" to "PCS_Status is set to OK".

Note that PCS_Status primitive uses OK and NOT_OKAY. The pcs_status variable in the PHY control state diagram (Figure 55-24 in 802.3-2008). However, the pcs_status variable definition (section 55.3.6.1 in 802.3-2008) specifies values TRUE and FALSE.

Suggested Remedy

Change "PCS_Status=OK is asserted" to "PCS_Status is set to OK".

Change instance on Page 191, line 6, as well.

Response

Response Status C

ACCEPT.
Comment Type: T Comment Status: A

rx_lpi_req variable no longer used

Suggested Remedy
- Remove definition for rx_lpi_req.

Response Response Status: C
ACCEPT.

Comment Type: T Comment Status: A
tx_lpi_error variable no longer used

Suggested Remedy
- Remove definition for tx_lpi_error.

Response Response Status: C
ACCEPT.

Comment Type: T Comment Status: A

Use of timer state in global boolean expression is a bit messy since it's state is ambiguous until started the first time.

Suggested Remedy
- Create variable "tx_lpi_alert_active".
- In figure 55-16b...
in TX_NORMAL and SEND_WAKE add line "tx_lpi_alert_active=FALSE"
in SEND_ALERT add line "tx_lpi_alert_active=TRUE"
- Create variable definition...
 "tx_lpi_alert_active -- A boolean variable that is set true when the PHY is transmitting ALERT signaling. Set false otherwise."

- On page 194 line 40 and 53 replace "ltx_lpi_qr_active""lpi tx_alert_time_done" with "tx_lpi_alert_active".

Proposed Response Response Status: Z
REJECT.

This comment was WITHDRAWN by the commenter.

Duplicate of comment #16?

Timer values for LPI states must be precise number of symbols in length. Often timers have some tolerance.

Suggested Remedy
- Line 23...
 Change "equal to 9 LDPC frame periods" to "equal to exactly 9 LDPC frames"
- Line 27...
 Change "equal to 4 LDPC frame periods" to "equal to exactly 4 LDPC frames"
- Lines 31 and 36...
 Change "equal to lpi_wake_time LDPC frame periods" to "equal to exactly lpi_wake_time LDPC frames"

Response Response Status: C
REJECT.

Stating that the timer period equals a value implies exactly equals; no tolerance is specified.

Comment Type: E Comment Status: A

Grammar

Suggested Remedy
- Change "receiver send IDLE" to "receiver sends IDLE".

Response Response Status: C
ACCEPT.
Comment Type: T Comment Status: A
Error counter is readable via MDIO register 3.22 specified in sub-clause 45.2.3.9b EEE wake error counter.

Suggested Remedy:
Add text "The value is held at all ones in the case of overflow. The current value of lpi_rx_err_cnt is available in MDIO register 3.22 specified in sub-clause 45.2.3.9b. The counter is reset to zero when read."

Response: Response Status: C
ACCEPT IN PRINCIPLE.

Add text 'The counter is reflected in register 3.22 (see 45.2.3.9b). This text is identical to that used in Clause 36. Specifying the reset/saturation functionality here would be redundant.'

Comment Type: T Comment Status: A
reference to TX_L should be RX_L

Suggested Remedy:
Replace TX_L with RX_L.

Response: Response Status: C
ACCEPT.

Comment Type: T Comment Status: A
Figure 55-14. Use of timer state in global boolean expression is messy. Consider replacing reference to timer state with new variable rx_lpi_wake.

Suggested Remedy:
Create variable "rx_lpi_wake".
In figure 55-16a...
in RX_INIT, RX_WE, and RX_C add line "rx_lpi_wake=FALSE"
in RX_W add line "rx_lpi_wake=TRUE"
Create variable definition...
"rx_lpi_wake -- A boolean variable that is set true when the PHY Rx is in the WAKE state and sending IDLE to the XGMII. Set false otherwise."

Delete note in Figure 55-14.

Response: Response Status: C
ACCEPT IN PRINCIPLE.

Create variable "rx_lpi_wake".
In figure 55-16a...
in RX_INIT, RX_WE, and RX_C add line "rx_lpi_wake=FALSE"
in RX_W add line "rx_lpi_wake=TRUE"
Create variable definition...
"rx_lpi_wake -- A boolean variable that is set true when the PHY Rx is in the WAKE state and sending IDLE to the XGMII. Set false otherwise."

Replace "!lpi_rx_wake_timer_done" with "rx_lpi_wake" at the entrance to LFER_MT_init in Figure 55-14

Delete note in Figure 55-14.
If LPI is signaled while the PHY is training, during the PCS_Test state, the local PHY may transition to QUIET before the Link Partner PHY is ready.

The PHY Control and Transmit PCS state diagrams need to be modified to check whether the local PHY is training and, if it is, ignore the LPI request.

Suggested Remedy

At the end of section 55.4.5.1, introduce a new variable, loc_lpi_en.

In the Fig 55-24 PHY Control state diagram, loc_lpi_en is set to FALSE upon entry into state PCS_Test and is set to TRUE upon entry into PCS_Data.

In the Transmit PCS state diagram, inhibit transitions to LPI (TX_L) when loc_lpi_en is FALSE.

Document the communications between the PHY Control block and the Transmit PCS block by updating the functional and reference diagrams and defining the PMA service primitive associated with the variable, loc_lpi_en.

A presentation will be submitted for review at the January 2010 interim meeting in New Orleans detailing the specific changes required.

Response

ACCEPT IN PRINCIPLE.

Follow suggested remedy.

Changes shown in slides 5-9 of grimwood_01_0110.pdf
If a normal retrain occurs while a PHY receiver is in LPI mode, there is no specified mechanism to abort the LPI mode (RX_L state) in the PCS 64B/65B transmit state diagram.

Suggested Remedy

Provide a mechanism to cause transition to RX_INIT state when normal retrain (exit from PCS_DATA state in Figure 55-24) occurs.

Response

ACCEPT IN PRINCIPLE.

Change:

```c
pma_alert_indicate
```

Indicates that an alert signal from the link partner has been received at the MDI. This signal will be set true when the PHY detects that it has received the complete alert signal and is set false otherwise.

To:

```c
pma_alert_indicate
```

Indicates that an alert signal from the link partner has been received at the MDI or that the PHY is in LPI and the local receiver operation is not satisfactory or that the PHY is in LPI and a fast retrain is occurring. This variable will be set true when the PHY detects that it has received the complete alert signal or if \(\text{rx_lpi_active} \cdot \left(\text{loc_rcvr_status} = \text{NOT_OK} + \text{fast_retrain_flag} = \text{TRUE} \right) \) and is set false otherwise.

Comment Type: T

Comment Status: R

Figure 55-16a. Note in upper right corner is not required.

Suggested Remedy

Remove note.

Response

ACCEPT IN PRINCIPLE.

Change note to read "This Figure is mandatory for EEE capability."

Note:

- The convention specified in 1.2 is not applicable here.
- The changes are shown in slides 3, 4, and 5 of the proposal from grimwood_03_0110.pdf.
Since this section specifies the timing requirements, the requirement for slave loop timing should be moved here from Section 55.3.4a.1 (page 191, line 51) or re-stated here.

Add line from 55.3.4a.1. “An EEE capable PHY shall support loop timing and loop timing shall be enabled on the slave PHY.” Maybe statement in 44.3.4a.1 should refer to this section.

Add line from 55.3.4a.1. “An EEE capable PHY shall operate with loop timing when configured as a SLAVE.”

lpi_rxw_err_cnt is set to 0 in PCS_Test (p 197 line 22). This needs to be shown in the PHY Control State Diagram.

In Figure 55-24, add the following assignment in state PCS_Test:

lpi_rxw_err_cnt <= 0

[use assignment operator]

None of the changes listed in Pillai_1109_01.pdf got added/modified into CL72.

Put changes from Pillai_02_1109.pdf into the next draft
rx_lpi_active is not sent to lower layers

Suggested Remedy
Change
"rx_quiet", tx_quiet and rx_lpi_active to control" to
"rx_quiet and tx_quiet to control".

Response
Response Status C
ACCEPT IN PRINCIPLE.

Comment Type T Comment Status A
energy_detect is not a boolean variable is has values OK and FAIL

Suggested Remedy
Redefine as follows:
"The energy_detect parameter takes on one of two values OK or FAIL as indicated by
PMA_SIGNAL.indication(SIGNAL_OK). A value of OK indicates that the PMD detects a
signal. A value of FAIL indicates that the PMD does not detect a signal. A value of OK does
not guarantee that a valid signal is being presented to the PMA client."

Response
Response Status C
ACCEPT IN PRINCIPLE.

Comment Type T Comment Status A
rx_lpi_active is not sent to lower layers

Suggested Remedy
Change
"rx_quiet", tx_quiet and rx_lpi_active to control" to
"rx_quiet and tx_quiet to control".

Comment Type E Comment Status A
Re-word.

Suggested Remedy
Change definition to:
The rx_lpi_active parameter is a boolean variable sent from the PCS that is set to TRUE
when LPI mode is active at the receiver and set to FALSE otherwise.

Response
Response Status C
ACCEPT.

Comment Type T Comment Status A
Effect of rx_lpi_active is to enable use of fast block lock.

Suggested Remedy
Change definition to:
When rx_lpi_active is TRUE, fast block lock as specified in 74.5.1.8 will be used to quickly
determine the start of frame during EEE REFRESH or WAKE. When rx_lpi_active is
FALSE, fast block lock will not be used.
Comment Type: E **Comment Status:** A

Suggested Remedy:
Change:
"The rx_quiet parameter can take on one of two values: TRUE or FALSE. A boolean variable sent from the PCS..."
To:
"The rx_quiet parameter is a boolean variable sent from the PCS..."

Response **Response Status:** C
ACCEPT IN PRINCIPLE.

According to Pillai_02_1109.pdf and resolution for comment #85 rx_quiet becomes rx_mode. Hence the description changes to:

"the rx_mode parameter is a variable sent from the PCS. It is set to QUIET while the receiver is in the RX_QUIET state and is set to DATA otherwise..."

Comment Type: T **Comment Status:** A

Suggested Remedy:
Change definition to:
When rx_quiet is TRUE the FEC decoder logic may deactivate functional blocks to conserve energy. When rx_quiet is FALSE the FEC decoder logic operate normally. The value rx_quiet is passed to the client layer through PMA_RX_QUIET(rx_quiet).request.

Response **Response Status:** C
ACCEPT IN PRINCIPLE.

Changing the suggested remedy to accommodate rx_mode instead of rx_quiet

When rx_mode is QUIET the FEC decoder logic may deactivate functional blocks to conserve energy. When rx_mode is DATA the FEC decoder logic operates normally. The value rx_mode is passed to the client layer through PMA_RX_MODE(rx_mode).request.
Responses

IEEE P802.3az D2.2 Energy Efficient Ethernet comments

Jan 2010

Cl 74 SC 74.5.1.8 P 233 L 22 # 41
Brown, Matt Applied Micro (AMCC)

Comment Type T Comment Status A
The note is talking both about transmit injection and receiver lock detection.
The note is out of place here and should be in the PCS Tx section (Clause 49).

Suggested Remedy
Delete first line or move it to sub-clause 49.2.6.
Delete 2nd line and move it to previous paragraph.

Response Response Status C
ACCEPT IN PRINCIPLE.
First line will be deleted.

Cl 74 SC 74.5.1.8 P 233 L 35 # 43
Brown, Matt Applied Micro (AMCC)

Comment Type T Comment Status D
incorrect reference to FEC_SIGNAL.indication
also incorrect capitalization

Suggested Remedy
Change: "FEC_SIGNAL.indication(RX_LPI_ACTIVE)" to
"FEC_LPI_ACTIVE.request(rx_lpi_active)"

Proposed Response Response Status Z
REJECT.

This is a duplicate comment. This issue is already covered through comment #42, filed by the same commenter.

Cl 74 SC 74.5.1.8 P 233 L 35 # 42
Brown, Matt Applied Micro (AMCC)

Comment Type T Comment Status A
incorrect reference to FEC_SIGNAL.indication
also incorrect capitalization

Suggested Remedy
Change: "FEC_SIGNAL.indication(RX_LPI_ACTIVE)" to
"FEC_LPI_ACTIVE.request(rx_lpi_active)"

Response Response Status C
ACCEPT.

Cl 74 SC 74.7.4.8 P 233 L 8 # 40
Brown, Matt Applied Micro (AMCC)

Comment Type T Comment Status A
SLIP is an action, moving the candidate start of block location.
Also, pull the 2nd sentence of the following paragraph into this paragraph.

Suggested Remedy
Change paragraph to:
When rx_lpi_active is TRUE, FEC Rapid block lock mechanism will attempt to determine
the FEC start of block location based on the deterministic pattern. When the rapid block
lock is locked, the determined start of block location is used as the FEC lock state diagram
candidate start of block location until the rapid block lock loses lock. Assuming the rapid
block lock determined the correct start of block location, the FEC lock state diagram will
achieve lock without requiring subsequent slips. The rapid lock algorithm is implementation
dependent and outside the scope of this standard.

Delete second sentence of paragraph on line 22.

Response Response Status C
ACCEPT IN PRINCIPLE.

When rx_lpi_active is TRUE and rx_mode is set to DATA, FEC Rapid block lock
mechanism will attempt to determine the FEC start of block location based on the
deterministic pattern. When the rapid block lock is locked, the determined start of block
depending and outside the scope of this location is used as the FEC lock state diagram
candidate start of block location until the rapid block lock loses lock. Assuming the rapid
block lock determined the correct start of block location, the FEC lock state diagram will
achieve lock without requiring subsequent slips. The rapid lock algorithm is implementation
dependent and outside the scope of this standard.

Delete second sentence of paragraph on line 22.

Cl 74 SC 74.7.4.8 P L # 102
Thaler, Pat Broadcom

Comment Type TR Comment Status A
The response to 384 on the first Working Group ballot has not been fully implemented.
FEC does not have "frames", it has blocks.

Suggested Remedy
All instances of "frame" in Clause 74 should be replaced with "block".

Response Response Status W
ACCEPT.

Change "frame" to "block" at the following locations:
Page 233, line 11, 15 and 19.
Comment Type TR Comment Status A

Indicate that LPI requests are undefined when the PHY is indicating Local Fault or Remote Fault.

Suggested Remedy

The effect of receipt of this primitive is undefined if link_status is not OK (see 28.2.6.1.1) or if LPI_REQUEST=ASSERT within 1 second of the change of link_status to OK.

To:

The effect of receipt of this primitive is undefined if link_status is not OK (see 28.2.6.1.1), or if LPI_REQUEST=ASSERT within 1 second of the change of link_status to OK, the PHY is indicating Local Fault, or the PHY is indicating Remote Fault.

Response Response Status C

ACCEPT IN PRINCIPLE.

Change:

The effect of receipt of this primitive is undefined if link_status is not OK (see 28.2.6.1.1) or if LPI_REQUEST=ASSERT within 1 second of the change of link_status to OK.

To:

The effect of receipt of this primitive is undefined in any of the following cases:

a) link_status is not OK (see 28.2.6.1.1)
b) LPI_REQUEST=ASSERT within 1 second of the change of link_status to OK
c) the PHY is indicating Local Fault
d) the PHY is indicating Remote Fault.

Response Response Status C

ACCEPT.

Comment Type TR Comment Status A

Comment #110 on D2.1 requested a change from Tw_sys to Tw_sys_tx to update the L2 nomenclature to the one adopted by the wake-shrinkage ad-hoc. Nevertheless, the scope of replacing Tw_sys with Tw_sys_tx was limited to only 78.4, leaving other dependent area on L2 with the incorrect older nomenclature. For L2 purposes the scope ought to be more than 78.4, specifically for 79 and to check if C30 or C30 annexes need updating.

Suggested Remedy

For the purposes of Layer 2, update the entire draft to match the nomenclature change done in comment #110 on D2.1. Specifically, change Tw_sys to Tw_sys_tx for the Layer 2 negotiated parameter references in C78.4, C79 and C30, where applicable and wherever else applicable.

Response Response Status C

ACCEPT.

Comment Type TR Comment Status A

Comment #111 on D2.1 requested a change so that the negotiated Tw_sys_tx parameter should be rounded up to the nearest integer usec to fit within the byte length fields available. This was necessary since there were no decimal points when we first introduced the parameters, however, the wake shrinkage adhic settled on numbers that had fractional amounts which would eat up the length of the TLVs.

The issue with the adopted resolution is that it was specific to a sentence in that section. All negotiated and exchanged parameters in Layer 2 do not have fractional values and that should be clearly stated throughout any references to negotiated Tw_sys_tx.

Suggested Remedy

For the purposes of Layer 2, all values need to be rounded to the nearest usec (i.e. not just for initialization params).

Statements can be inserted in C78.4, C79 and C30 where applicable and wherever else applicable.

Response Response Status C

ACCEPT.
Part of the adopted resolution to comment #110 on D2.1, a change in the assignment in the init state to be LOCAL INITIAL TX VALUE and LOCAL INITIAL RX VALUE. This inadvertantly had the opposite effect of what we were trying to do as it leaves the start values to the system instead of the times defined by table 78-4

SuggestedRemedy

There are two ways that could resolve this. Either:
(a) Rather than change assignments in init state, change Tw_phy to Tw_sys_tx in 78.4.2.2 PHY WAKE VALUE and 79 where it occurs. I believe this occurs in 3 places total (2 in 79 and 1 in 78.4.2.2).

or

(b) initializing everything to PHY WAKE VALUE

The second proposal maybe simpler as it reduces two constants in the draft. Nevertheless, I included both for discussion in case there was something missed

Response

ACCEPT IN PRINCIPLE.

Implement option (b) in the suggested remedy