A state diagram in the MII clause. Wow. Why can't the PHY assert/deassert the CRS signal to indicate when the transmit path is in LPI?

Suggested Remedy
Take out the state diagram. The 100BASE-TX PHY with LPI should be responsible for asserting and deasserting CRS, and then implement the Suggested Remedy in my general comment concerning the structure of the draft amendment.

In favor of accepting the proposed reject:
Yes: 15
No: 0
Abstain: 7

The state machine in the Reconciliation Sublayer was the cornerstone of the baseline (law_01_1108) that was adopted by the Task Force.

It was considered advantageous to have the control of the PLS_CARRIER.indication in the RS for a number of reasons:
1. It keeps the PHY receive and transmit paths separate (the PHY considers CRS to be part of the receive path).
2. It allows the PHY to go to sleep without having to maintain state & control the wake process.
3. It keeps the "data holdback" function close to the MAC and egress buffers, where it would be implemented in most designs.
4. It frees the PHY from having to participate in the wake time negotiation process (that is controlled using LLDP frames).
5. It works for PHYs that operate at speeds greater than 1Gbps, so the same mechanism can be used for all speeds.

The state diagram would be present (or deleted according to the comment) whether the proposed changes to the document are accepted or not.

What do the little triangles in Figure 22-6a represent? The figure presents what appears to be a timing diagram that shows the relationship between various logical signals. How does an abstract service primitive fit into a logical timing diagram, and what does a triangle indicate?

Suggested Remedy
Remove the abstract service primitive from the timing diagram, and then implement the Suggested Remedy in my general comment concerning the structure of the draft amendment.

The diagram is based on the proposal "law_01_1108" that was adopted as the baseline for this section.

The representation of PLS_CARRIER.indication adds clarity to the diagram without any ambiguity.

This diagram would be present regardless of the document structure chosen.
This is a general comment regarding the structure of the draft amendment.

As an amendment to IEEE Std 802.3, the material in this draft will eventually be folded into the base standard. When this happens, the definitions for the 100BASE-X and 1000BASE-X Physical Coding Sublayers will be substantially changed, and the changes will be difficult to discern. The definitions for the MII and GMII will also be substantially changed.

The 100BASE-X and 1000BASE-X PCSs are used for many other port types besides 100BASE-TX and 1000BASE-X. Among these are 100BASE-FX, 100BASE-LX10, 100BASE-BX10, 100BASE-SX, 100BASE-LX, 100BASE-CX, 100BASE-BX10, 100BASE-PX10, 100BASE-PX20, 10G/1GBASE-PRX-D/U1, 10G/1GBASE-PRX-D/U2, and 10G/1GBASE-PRX-D/U3.

These port types are not included in the set of objectives for P802.3az, and the specifications for the PCS and MII for these port types must not be changed or effected in any way by P802.3az. Each of these port types must have a current IEEE Std 802.3 PCS and MII to reference.

Suggested Remedy

There are many ways to solve this problem. I prefer the following approach:

1. Preserve the definitions for the MII, GMII, 100BASE-X PCS, and 1000BASE-X PCS without change.

2. Define the changes required to support EEE in a set of normative annexes, i.e. Annex 24A for Clause 24, and Annex 25A for Clause 25, etc. Example text for Annex 24A and Annex 25A have been provided by me to the task force chair.

3. Refer to these normative annexes from the body of Clause 78.

Response

ACCEPT IN PRINCIPLE.

See response to Comment #410
Is signaling of LPI between an RS and its link partner, or between the RS and the lower parts of the PHY? If the PHY has no option to signal the request, then the language is appropriate, but it seems inconsistent with MII text describing the xMII signals. The effect of the primitive is to generate signals on the MII and that isn’t specified here, but should be.

Suggested Remedy
Assure MII clause are consistent in what layer is signaling to what peer layer, and that any additional requirements on conveying the LPI request in lower sublayers is properly represented. Add generic text that covers the three MII types – how the assert or deassert is signaled, can probably be generic using the MII definition of assert low power idle.

Response
Response Status: A
Accept in principle.

The PHY has no option to signal the request so the language is appropriate however editor will look into adding clarifying text as in the suggested remedy.

Editor to check if that this is clear in the xMII clauses.

The Lock state diagram, which I don’t think is optional, uses the variable "rx_block_lock" where the current standard has "block_lock". Yet 49.2.13.2.2 says "The following variables are used only for the EEE capability... rx_block_lock". Problem - and there may be similar problems e.g. in Clause 36. So I’m piling on to D2.0 comment 190 and 174, we need to preserve the non-EEE material in an undamaged state, by use of annexes like 4A, duplicate state diagrams or other means. Otherwise, users will go back to 802.3-2008 for non-EEE product, and any future maintenance to affected areas will be ignored.

Suggested Remedy
Preserve the non-EEE material in an undamaged state, by use of annexes like 4A, duplicate state diagrams or other means.

Response
Response Status: W
Reject.

This was discussed at length during the resolution of comments against draft 2.0 and the task force decided against the suggested remedy.