100GE and 40GE PCS and MLD Proposal

IEEE 802.3ba January 2008 Portland

Contributors and Supporters

David Law – 3com

Steve Trowbridge - Alcatel-Lucent

Brad Booth, Dimitrios Giannakopoulos, Francesco Caggioni, Keith Conroy – AMCC

Rita Horner – Avago

Arthur Marris – Cadence

Mike Shahine - Ciena

Mark Gustlin, Gary Nichol, Oded Trainin - Cisco Systems

Med Belhadj – Cortina

Chris Cole - Finisar

Krishnamurthy Subramanian – Force10

Aris Wong – Foundry Networks

Shinji Nishimura, Hidehiro Toyoda -Hitachi Ltd Dan Dove – HP

Petar Pepeljugoski – IBM

Jerry Pepper, Thananya Baldwin - Ixia

Jeffery J. Maki, David Ofelt, Brad Turner - Juniper Networks

Martin White - Marvel

Pete Anslow – Nortel

Farhad Shafai - Sarance Technologies

Farzin Firoozmand, Craig Hornbuckle – SMI

Andre Szczepanek – TI

Martin Carroll - Verizon

Frank Chang - Vitesse

Agenda

- 40GE/100GE Architecture
- PCS and MLD layer details
- Possible XL/CGMII Interface
- Alignment details
- Alignment performance metrics
- Clocking example
- Skew
- Future work items and summary

40GE/100GE Architecture

Proposed 100GE/40GE PCS and MLD Layer

- 10GBASE-R 64B/66B based PCS Run at 100G or 40G aggregate
- n Lane MAC/PCS to PMA/PMD Electrical Interface

Ten Lanes for 100GE initially

Four Lanes for 40GE initially

Each lane runs at 10.3125G

Data is striped across the electrical lanes 66 bit blocks at a time (round robin)

Periodic alignment blocks are added to allow deskew

- Support m PMD lanes with the same PCS/MLD layer
- PMA maps n lane electrical interface to m lane PMD

PMA is simple bit level muxing

Does not know or care about PCS coding

• Alignment and skew compensation is done in the Rx MLD block only

Striping Mechanism

This example is 40GE with 4 electrical and 4 optical lanes

PCS Functions: 66 bit encoding Scrambling

MLD Functions:

Alignment block addition periodically Round Robin block distribution

Alignment Mechanism – 40GE Example

RX MLD Functions: Re-Align 66 bit blocks Remove the Alignment blocks

Key Concept – Virtual Lanes

• This is only needed when the number of Electrical (n) and PMD (m) lanes are not equal

If an interface will evolve so that n != m then VLs make the transition easy

- Data from the MAC is first encoded into a continuous stream of 64B/66B blocks (100G or 40G aggregate stream).
- The 100G aggregate stream is split into a number of 'virtual lanes', also based on 64B/66B blocks
- An alignment block is added to each virtual lane

Sent infrequently

• The number of virtual lanes generated is scaled to the Least Common Multiple (LCM) of the n lane electrical interface and the m lane PMD

This allows all data (bits) from one virtual lane to be transmitted over the same electrical and optical lane combination

This ensures that the data from a virtual lane is always received with the correct bit order at the Rx MLD

• The virtual lane marking allows the Rx MLD to perform skew compensation, realign all the virtual lanes, and reassemble a single 100G or 40G aggregate stream (with all the 64B/66B blocks in the correct order)

Bit Flow Through – 100GE 4 lane PMD

- 20 VLs
- 10 Electrical lanes
- 4 Optical lanes
- With Skew, VLs move around
- RX MLD puts things back in order

How Many Virtual Lanes for 40GE?

For each PMD objective, what is the number of lanes being considered?

All can evolve to fewer lanes in the future

• Support at least 100m on MMF

4 fibers

• Support at least 10m over a copper cable assembly

4 lanes

• Support at least 1m over a backplane

4 lanes

• Number of "Virtual Lanes" = Number of Lanes

Just simple 66 bit block striping

Number of Electrical Lanes	Supportable PMDs	Virtual Lanes Needed			
4, 2, 1	1, 2, 4	4			

• With 4 VLs, all combinations of the above are possible

How Many Virtual Lanes for 100GE?

• For each PMD objective, what is the number of lanes being considered?

All can evolve to less lanes in the future

• Support at least 10km on SMF

4 wavelengths

Support at least 100 meters on OM3 MMF

10 fibers

• Support at least 40-km on SMF

4 wavelengths

 Support at least 10m over a copper cable assembly 10 lanes

How Many Virtual Lanes are Needed for 100GE?

Number of Electrical Lanes	Supportable PMD Lane Widths	Virtual Lanes Needed
10, 5, 4, 2, 1	1, 2, 3, 4, 5, 6, 8, 10, 12	120
10, 5, 4, 2, 1	1, 2, 3, 4, 5,10	60
10, 5, 4, 2, 1	1, 2, 4, 5, 10	20
10, 5, 2, 1	1, 2, 5, 10	10
	Sweet S	Spot?

- It seems that the sweet spot is still 20 VLs...
- Supports currently envisioned PMDs
- Supports Electrical lane evolution such as a 4x25G interface, serial etc..20 VLs are always used

PCS

- Same 10GBASE-R PCS (Clause 49), untouched, just running at 40Gbps or 100Gbps
- Same Control Block encoding, same scrambler

With 8B alignment we don't use all of the block types

Input Data	S y n c	Block	Payload										
Bit Position:	01	2											65
D ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ D ₇	01	Do	D ₁ D ₂ D ₃ D ₄ D ₅ D ₆ D ₇						D ₇				
Control Block Formats:		Block Type Field											
C ₀ C ₁ C ₂ C ₃ C ₄ C ₅ C ₆ C ₇	10	0x1 e	G	C1	C ₂ C ₃ C ₄			C ₅	Ce		C ₇		
C ₀ C ₁ C ₂ C ₃ /O ₄ D ₅ D ₆ D ₇	10	0x2d	C ₀	C ₁	C ₂ C ₃ O ₄		04	D ₅		D ₆		D ₇	
$\rm C_0 C_1 C_2 C_3/S_4 D_5 D_6 D_7$	10	0×33	S	C1	C ₂	C ₂ C ₃				D ₅	D ₆		D ₇
O ₀ D ₁ D ₂ D ₃ /S ₄ D ₅ D ₆ D ₇	10	0x66	D1	D ₂	D ₃	D ₃				D ₅		D_6	D ₇
O ₀ D ₁ D ₂ D ₃ /O ₄ D ₅ D ₆ D ₇	10	0x55	D1	D_2	D ₃	D ₃		O ₀ O ₄		D ₅		D ₆	D ₇
S ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ D ₇	10	0x78	D	D ₂	D ₃		0	4		D ₅		D_6	D ₇
0 ₀ D ₁ D ₂ D ₃ C ₄ C ₅ C ₆ C ₇	10	0x4b	D ₁	D ₂	D ₃		O ₀	C4		C5		C ₆	C7
T ₀ C ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	10	0x87		C1	C ₂	C	3	C4		C ₅		C ₆	C7
D ₀ T ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	10	0x99	D ₀		C_2	C	3	C4		C ₅		C ₆	C7
$D_0 D_1 T_2 C_3 C_4 C_5 C_6 C_7$	10	0xaa	Do	D1		¢	3	C4		C5		C ₆	C7
D ₀ D ₁ D ₂ T ₃ /C ₄ C ₅ C ₆ C ₇	10	0xb4	Do	D1	D ₂			C,		C5		C ₆	C7
D ₀ D ₁ D ₂ D ₃ /T ₄ C ₅ C ₆ C ₇	10	0xcc	Do	D1	D ₂		D	3		C5		C ₆	C7
${\sf D}_0{\sf D}_1{\sf D}_2{\sf D}_3/{\sf D}_4{\sf T}_5{\sf C}_6{\sf C}_7$	10	0xd2	Do	D1	D ₂		D	3	1	D4		C ₆	C7
${\sf D}_0{\sf D}_1{\sf D}_2{\sf D}_3/{\sf D}_4{\sf D}_5{\sf T}_6{\sf C}_7$	10	0xe1	Do	D1	D ₂		D ₃		D ₄			D ₅	C7
$D_0 D_1 D_2 D_3 / D_4 D_5 D_6 T_7$	10	0xff	Do	D1	D ₂		D	3		D4		D ₅	D ₆

XL/CGMII Interface

• Leverage XGMII

• Make it scalable

- Proposal: nx64 bit interface, logical interface
- nxTXD<63:0>, nxTXC<7:0>, nxRXD<63:0>, nxRXC<7:0>
- First 40GE might be 128bits + control
- First 100GE might be 320bits + control
- Only start packets on 8B boundary

Simplifies MAC design, idle deletion etc.

• Use deficit counter to adjust idle to an average of 12B

Alignment Proposal

- Send alignment on a fixed time basis
- Alignment word also identifies virtual lanes
- Sent every 16384 66bit blocks on each virtual lane at the same time

~216usec for 20 VLs @ 100G

~108usec for 4 VLs @ 40G

- It interrupts packets
- Takes only 0.006% (60PPM) of the Bandwidth
- Rate Adjust FIFO will delete enough IPG so that the MAC still runs at 100.000G or 40.000G with the interface running at 10.3125G

Alignment Word Proposal

Requirements:

- Significant transitions and DC balanced word is not scrambled
- Keep in 66 bit form, but no relation to 10GBASER is needed
- But why not keep it close? Because of the clock wander concerns
- Contains Virtual Lane Identifier

Proposed Alignment Word

10	VL	~VL

- This is DC balanced
- Encoding still TBD, will make it look random
- No relationship to the normal 10GBASE-R blocks
- Added after and removed before 64/66 processing
- Alignment block is periodic, no hamming distance concerns with 64/66 block types

Finding VL Alignment

- After reception in the rx MLD, you have x VLs, each skewed and transposed
- First you find 66bit alignment on each VL

Each VL is a stream of 66 bit blocks

Same mechanism as 10GBASE-R (64 valid 2 bit frame codes in a row)

• Then you hunt for alignment on each VL

Look for one of the 20 VL patterns repeated and inverted four times

- Alignment is declared on each VL after finding 2 consecutive non-errored alignment patterns in the expected locations (16k words apart)
- Out of alignment is declared on a VL after finding 4 consecutive errored frame patterns
- Once the alignment pattern is found on all VLs, then the VLs can be aligned

Alignment Performance Parameters – 100GE

• Mean Time To Alignment (MTTA)

Mean time it takes to gain Alignment on a lane or virtual lane for a given BER

Nominal time = 314usec

• Mean Time To Loss of Alignment (MTTLA)

Mean time it takes to lose Alignment on a lane or virtual lane for a given BER

- Probability of False Alignment (PFA) = 3 E-40
- Probability of Rejecting False Alignment (PRFA) = ~1
- Also have 64/66 stats on the graph for comparison

MTTS – Mean Time To Sync

BER MTTLS – With the 125usec BER window, what is the Mean Time To Lose Sync

MTTLS - Mean Time To Lose Sync

Alignment Performance Parameters – 100GE

Clocking Example – 40GE

Variable Skew Handling

- This is a concern only for PMDs where we multiplex data when n != m
- We need to Find the maximum variable skew for the applicable PMDs
- For these PMDs, retiming buffers are used to handle the variable skew in the TX PMA and RX PMA
- Value of the variable skew is dependent on the technology, from a few bits to 10s of bits

Total Static Skew Numbers

- We need to add up all of the skew to see how much total static skew must be compensated for at the receiver
- TX Electrical
- TX PMD
- Optical Medium
- RX PMD
- RX Electrical
- Note that 10nsec at 100Gbps = 1kbit of memory
- Numbers depend on what technology is ultimately used!

Work Items

- Determine Total Skew budget
- Determine Variable Skew budget
- Complete the MTTFPA

Need likelihood of burst errors, electrical and optical

• State Machines

Summary

- Simple 10GBASE-R based PCS
- MLD layer to support multiple physical lanes/lambdas
- Complexity is low within the MLD layer
 - Simple block data striping
- Complexity in the optical module is low
 - Simple bit muxing when m != n
- Based on proven 64B/66B framing and scrambling
- Electrical interface is feasible at 10x10G or 4x10G
- Allows for a MAC rate of 100.000G or 40.000G
 - Overhead very low and independent of packet size
- Supports an evolution of optics and electrical interfaces