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Agenda

• 40GE/100GE Architecture
• PCS and MLD layer details
• Possible XL/CGMII Interface
• Alignment details
• Alignment performance metrics
• Clocking example
• Skew
• Future work items and summary
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40GE/100GE Architecture
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Proposed 100GE/40GE PCS and MLD Layer

• 10GBASE-R 64B/66B based PCS 
Run at 100G or 40G aggregate

• n Lane MAC/PCS to PMA/PMD Electrical Interface
Ten Lanes for 100GE initially
Four Lanes for 40GE initially
Each lane runs at 10.3125G
Data is striped across the electrical lanes 66 bit blocks at a time 
(round robin)
Periodic alignment blocks are added to allow deskew

• Support m PMD lanes with the same PCS/MLD layer
• PMA maps n lane electrical interface to m lane PMD

PMA is simple bit level muxing
Does not know or care about PCS coding 

• Alignment and skew compensation is done in the Rx MLD block only
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Striping Mechanism
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Alignment Mechanism – 40GE Example
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Key Concept – Virtual Lanes
• This is only needed when the number of Electrical (n) and PMD (m) lanes are 

not equal
If an interface will evolve so that n != m then VLs make the transition 
easy

• Data from the MAC is first encoded into a continuous stream of 64B/66B 
blocks (100G or 40G aggregate stream).

• The 100G aggregate stream is split into a number of ‘virtual lanes’, also 
based on 64B/66B blocks 

• An alignment block is added to each virtual lane
Sent infrequently

• The number of virtual lanes generated is scaled to the Least Common 
Multiple (LCM) of the n lane electrical interface and the m lane PMD

This allows all data (bits) from one virtual lane to be transmitted over the 
same  electrical and optical lane combination
This ensures that the data from a virtual lane is always received with the 
correct bit order at the Rx MLD

• The virtual lane marking allows the Rx MLD to perform skew compensation, 
realign all the virtual lanes, and reassemble a single 100G or 40G aggregate 
stream (with all the 64B/66B blocks in the correct order)



9

Bit Flow Through – 100GE 4 lane PMD

• 20 VLs
• 10 Electrical lanes
• 4 Optical lanes
• With Skew, VLs move 

around
• RX MLD puts things 

back in order



10

How Many Virtual Lanes for 40GE?
• For each PMD objective, what is the number of lanes being 

considered?

All can evolve to fewer lanes in the future

• Support at least 100m on MMF

4 fibers

• Support at least 10m over a copper cable assembly
4 lanes

• Support at least 1m over a backplane
4 lanes

• Number of “Virtual Lanes” = Number of Lanes
Just simple 66 bit block striping

4, 2, 1

Number of Electrical 
Lanes

41, 2, 4

Virtual Lanes 
Needed

Supportable PMDs

• With 4 VLs, all combinations of the above are possible
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How Many Virtual Lanes for 100GE?

• For each PMD objective, what is the number of lanes 
being considered?

All can evolve to less lanes in the future

• Support at least 10km on SMF
4 wavelengths

• Support at least 100 meters on OM3 MMF
10 fibers

• Support at least 40-km on SMF
4 wavelengths

• Support at least 10m over a copper cable assembly
10 lanes
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How Many Virtual Lanes are Needed for 100GE?

• It seems that the sweet spot is still 20 VLs…

• Supports currently envisioned PMDs

• Supports Electrical lane evolution such as a 4x25G interface, 
serial etc..20 VLs are always used

201, 2, 4, 5, 1010, 5, 4, 2, 1
10, 5, 2, 1

10, 5, 4, 2, 1
10, 5, 4, 2, 1

Number of Electrical 
Lanes

101, 2, 5, 10

601, 2, 3, 4, 5,10
1201, 2, 3, 4, 5, 6, 8, 10, 12

Virtual Lanes NeededSupportable PMD 
Lane Widths

Sweet Spot?
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PCS

• Same 10GBASE-R PCS (Clause 49), untouched, just 
running at 40Gbps or 100Gbps

• Same Control Block encoding, same scrambler
With 8B alignment we don’t use all of the block types
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XL/CGMII Interface

• Make it scalable

• Proposal: nx64 bit interface, logical interface

• nxTXD<63:0>, nxTXC<7:0>, nxRXD<63:0>, nxRXC<7:0>

• First 40GE might be 128bits + control

• First 100GE might be 320bits + control

• Only start packets on 8B boundary
Simplifies MAC design, idle deletion etc.

• Use deficit counter to adjust idle to an average of 12B

• Leverage XGMII
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Alignment Proposal
• Send alignment on a fixed time basis

• Alignment word also identifies virtual lanes

• Sent every 16384  66bit blocks on each virtual lane 
at the same time

~216usec for 20 VLs @ 100G

~108usec for 4 VLs @ 40G

• It interrupts packets

• Takes only 0.006% (60PPM) of the Bandwidth 

• Rate Adjust FIFO will delete enough IPG so that the 
MAC still runs at 100.000G or 40.000G with the 
interface running  at 10.3125G
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Alignment Word Proposal

Requirements:
• Significant transitions and DC balanced – word is not scrambled

• Keep in 66 bit form, but no relation to 10GBASER is needed

• But why not keep it close? – Because of the clock wander concerns

• Contains Virtual Lane Identifier

10

Proposed Alignment Word

• This is DC balanced

• Encoding still TBD, will make it look random

• No relationship to the normal 10GBASE-R blocks 

• Added after and removed before 64/66 processing

• Alignment block is periodic, no hamming distance concerns with 64/66 block types

VL ~VL
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Finding VL Alignment

• After reception in the rx MLD, you have x VLs, each skewed and transposed

• First you find 66bit alignment on each VL

Each VL is a stream of 66 bit blocks

Same mechanism as 10GBASE-R (64 valid 2 bit frame codes in a row)

• Then you hunt for alignment on each VL

Look for one of the 20 VL patterns repeated and inverted four times

• Alignment is declared on each VL after finding 2 consecutive non-errored 
alignment patterns in the expected locations (16k words apart)

• Out of alignment is declared on a VL after finding 4 consecutive errored 
frame patterns

• Once the alignment pattern is found on all VLs, then the VLs can be aligned
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Alignment Performance Parameters – 100GE
• Mean Time To Alignment (MTTA)

Mean time it takes to gain Alignment on a lane or virtual lane for a 
given BER

Nominal time = 314usec 

• Mean Time To Loss of Alignment (MTTLA)

Mean time it takes to lose Alignment on a lane or virtual lane for a 
given BER

• Probability of False Alignment (PFA) = 3 E-40

• Probability of Rejecting False Alignment (PRFA) = ~1

• Also have 64/66 stats on the graph for comparison

MTTS – Mean Time To Sync 

BER MTTLS – With the 125usec BER window, what is the Mean 
Time To Lose Sync

MTTLS - Mean Time To Lose Sync
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Alignment Performance Parameters – 100GE

Alignment and Sync Time
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Clocking Example – 40GE

40GE MAC RS

40GE PCS and
MLD (Tx)

Clock 
Compensation

FIFO (TX)
XLGMII XLGMII

4x(64+8) 4x(64+8)

66:16
Gearbox

66:16
Gearbox
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Gearbox

66:16
Gearbox

66

66

66

66

16

16

16

16

40GE PCS and
MLD (Rx)

Clock 
Compensation

FIFO (RX)
XLGMII XLGMII

4x(64+8) 4x(64+8)

16:66
Gearbox

16:66
Gearbox

16:66
Gearbox

16:66
Gearbox

66
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66
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PLL
156.25MHz Reference Clock

Phase
Interp

644.53MHz

644.53MHz

156.25MHz

RD_EN

WR_EN

156.25MHz Ref Clock
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Variable Skew Handling

• This is a concern only for PMDs where we multiplex data 
when n != m

• We need to Find the maximum variable skew for the 
applicable PMDs

• For these PMDs, retiming buffers are used to handle the 
variable skew in the TX PMA and RX PMA

• Value of the variable skew is dependent on the 
technology, from a few bits to 10s of bits
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Total Static Skew Numbers

• We need to add up all of the skew to see how much total 
static skew must be compensated for at the receiver

• TX Electrical

• TX PMD

• Optical Medium

• RX PMD

• RX Electrical

• Note that 10nsec at 100Gbps = 1kbit of memory

• Numbers depend on what technology is ultimately used!
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Work Items

• Determine Total Skew budget

• Determine Variable Skew budget

• Complete the MTTFPA

Need likelihood of burst errors, electrical and optical

• State Machines 
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Summary
• Simple 10GBASE-R based PCS 

• MLD layer to support multiple physical lanes/lambdas

• Complexity is low within the MLD layer
• Simple block data striping

• Complexity in the optical module is low
• Simple bit muxing when m !=  n

• Based on proven 64B/66B framing and scrambling

• Electrical interface is feasible at 10x10G or 4x10G

• Allows for a MAC rate of 100.000G or 40.000G
• Overhead very low and independent of packet size

• Supports an evolution of optics and electrical interfaces


