Additional Concerns on CR4/CR10 Specifications

July 14, 2009

Ali Ghiasi, Vivek Telang, Magesh Valliappan
Broadcom Corporation
aghiasi@broadcom.com
CR4/CR10 High Level Problem Statement

- Current PCB loss from TP0-TP1 or from TP4-TP5 has only 2.3 dB loss allocation which does not allow a practical physical implementation
- 3 dB ILD margin was taken out of KR and allocated to IL without consideration for stacked connector combined with relaxed cable return loss
- Reference cable data used for CR4/CR10 simulation has about 10 dB better return loss than cable return loss specifications
- The Reference QSFP 10 m cable loss from pair to pair varied by as much as 3 dB, but the cable with lowest loss is included in the standard
- FEXT on adjacent pair are not included in the CR4/CR10 baseline analysis, when worst case FEXT included then PSXT increase by 6-10 dB in the critical high frequency region resulting in ILD crossover in just few 100 MHz!
- CR4/CR10 electrical level are 50% higher than SR4/SR10
- CR4/CR10 still require significant amount work to improve the compliance and test methodology but this is secondary at this point!
PCB Loss for Common Host Implementation

- Host with 4” trace 5 mils stripline on FR4-08 has 6.2 dB for stack connector and 4.3 dB for the SMT connector
 - The stack connector delta loss is about 1-1.5 dB!
- Large port count switches require at least 10” of PCB trace!
 - With current CR4/CR10 PCB loss budget even N4000-13 will not meet the 2.3 dB budget.
- Current CR4/CR10 PCB and cable RL as shown below can produce 2-3 dB of ILD on each end!
Reference 10 m QSFP Cable Loss

- Low loss pair matches Eq 85-50 exactly, but high loss pair has 3 dB more loss!

![QSFP Cable Test Board Loss Removed](image)

Eqn $\text{ILca} = -0.192749 \times \text{pow}(\text{freq}/1e6, 0.5) - 0.001494 \times \text{freq}/1e6$

Eqn $\text{ILca}_2 = (-0.2120239 \times \text{pow}(\text{freq}/1e6, 0.5) - 0.001643 \times \text{freq}/1e6)$
Reference 10 m QSFP Cable Return Loss

- Cable return specifications Eq 85-60 is 10 dB worse than reference cable!
Where is the Source of Additional FEXT

- It appears that worst case FEXT data (RX4 and RX3) were not included in daminico_01_0708

Pair with higher FEXT

Pair with lower FEXT

Pair with higher PSXT

Pair with lower PSXT

QSFP Module
IEEE 802.3ba Task Force Meeting, July 2009 San Francisco

A. Ghiasi

IEEE 802.3ba Task Force Meeting, July 2009 San Francisco
FEXT and ILD on Low Loss Cable Pair

- Including 3 FEXT disturber on RX1
 - Used 4 NEXT disturber on RX3 instead since RX1 is one signal pair further away

Problem Area

ICR Crossover

freq, GHz

m1
freq=5.150GHz
SDD21TX1=-21.712

m2
freq=5.150GHz
SDD21TX3=-24.746

Problem Area
FEXT and ILD on High Loss Cable Pair

- Including 4 NEXT disturber and 3 FEXT disturber on RX3
QSFP MCB-HCB FEXT-NEXT

- PNEXT assumed to be 4x TX1RX2 NEXT
- PFEXT 2 dB higher than PFEXT for TX1RX2
- Connector is the dominant factor to PSXT ~5 GHz
Assumptions in Diminico_01_0708 Technical Analysis

- Insertion Loss, Return Loss, Crosstalk per data from Chris DiMinico
- Package models based on measured data
- Receiver architecture same as that used in KR group (802.3ap)
- MATLAB simulations
 - Pulse Response “Frequency-domain” Analysis, with MMSE optimization
- Performance evaluation based on detailed, worst-case error probabilities (not simple Gaussian assumption)
- On-chip impairments included
 - Clock jitter, Offsets, Front-end noise, Detailed analog circuit models, Detailed equalizer implementation penalties
- Worst-casing of ISI data patterns and crosstalk phase

Source: Vivek Telang, Broadcom
Lack of Commonality Between CL85 and CL86 is Alarming

• SR4 physical instantiation is the same as CR4 style 1 connector
• SR10 physical instantiation is the same CR10 connector
• Electrical level
 – CL85 electrical I/O level are 1200 mV
 – CL86 output 770 mV and max input 850 mV
 – CL85 electrical levels are 50% higher than CL86 and could potential damage the module!
• When CL85 and CL86 have same physical instantiation they should have the same return loss
• We should either make the electrical level for CL85 and 86 identical or define hardware key
 – The logical and the green choice is to use CL86 electrical levels as hardware key forces removes the option of Cu and optics plug and play that SFP+ offers.
Option Moving Forward

- Do nothing
 - Would result in cable or host passing but link failing!
- Spin off clause 85 into a new project
- Delay revision 2.2 by at least one meeting cycle in order to close the copper budget as many of the baseline assumption must be verified
 - Expect 5 m reach