1.1 Fitted insertion loss

The fitted insertion loss IL_{fitted} as a function of frequency f is defined in Equation (1).

$$IL_{\text{fitted}}(f) = a_1 \sqrt{f} + a_2 f + a_4 f^2 \text{ dB}$$ \hspace{1cm} (1)

Given the cable assembly insertion loss IL measured between TP1 and TP4 over N frequencies f_n spanning 50 MHz to 7500 MHz, the coefficients of the fitted insertion loss shall be calculated as follows.

Define the frequency matrix F as shown in Equation (2).

$$F = \begin{bmatrix} \sqrt{f_1} & f_1 & f_1^2 \\ \sqrt{f_2} & f_2 & f_2^2 \\ \vdots & \vdots & \vdots \\ \sqrt{f_N} & f_N & f_N^2 \end{bmatrix}$$ \hspace{1cm} (2)

The polynomial coefficients a_1, a_2, and a_4 shall be calculated as shown in Equation (3).

$$\begin{bmatrix} a_1 \\ a_2 \\ a_4 \end{bmatrix} = (F^T F)^{-1} F^T IL$$ \hspace{1cm} (3)

In Equation (3), “T” denotes the matrix transpose operator and IL is a column vector of the measured insertion loss values, IL_{n} at each frequency f_n.

The cable assembly insertion loss shall satisfy the requirements defined in Table 1. The fitted insertion loss corresponding to the maximum insertion loss at 5.15625 GHz and the maximum allowed values of a_1, a_2, and a_4 is illustrated in Figure 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion loss at 5.15625 GHz</td>
<td>Max.</td>
<td>dB</td>
<td>17.04</td>
</tr>
<tr>
<td>Fitted insertion loss, a_1</td>
<td>Max.</td>
<td>dB/root-GHz</td>
<td>6.0</td>
</tr>
<tr>
<td>Fitted insertion loss, a_2</td>
<td>Max.</td>
<td>dB/GHz</td>
<td>1.0</td>
</tr>
<tr>
<td>Fitted insertion loss, a_4</td>
<td>Max.</td>
<td>dB/GHz2</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Note – The limit on the insertion loss at 5.15625 GHz prevents the coefficients a_1, a_2, and a_4 from having the maximum allowed values simultaneously.
1.2 Insertion loss deviation

The insertion loss deviation ILD is the difference between the measured insertion IL and the fitted insertion loss IL_{fitted} as defined in Equation (4).

\[ILD(f) = IL(f) - IL_{fitted}(f) \] \hspace{1cm} (4)

The ILD shall be within the region defined by Equation (5) and Equation (6) for all frequencies from 50 MHz to 7500 MHz.

\[ILD(f) \geq ILD_{\text{min}}(f) = -0.7 - 0.0002f \text{ dB} \] \hspace{1cm} (5)

\[ILD(f) \leq ILD_{\text{max}}(f) = 0.7 + 0.0002f \text{ dB} \] \hspace{1cm} (6)
1.3 Justification for proposed requirements (NOT FOR INCLUSION IN THE DRAFT)

![Graph showing SDD21 magnitude at fundamental (dB) with frequency (GHz) on the x-axis and insertion loss (dB) on the y-axis.]

- a_1 (dB/root-GHz)
- a_4 (dB/GHz²)

Healey 7/15/2009

IEEE P802.3ba Task Force