Conditions for 100m and >100m reaches on OM3 and OM4 MMF at 10Gb/s/ch

Jack Jewell

March 17-20, 2008
Goals

• Understand requirements/tradeoffs for a low-cost, robust 100m link on OM3 fiber at 10Gb/s/ch
• Explore feasibility for practical, >100m links on OM3 and OM4 fibers at 10Gb/s/ch
• Addition of the >100m links must not affect the costs for 100m products
• Compared to SMF links, the >100m links should provide significant savings in cost and power dissipation, while enabling higher density and faster time to market
Use 3_1_16a spreadsheet

- Parameters described use 3_1_16a nomenclature
- Always have (straight from 3_1_16a):
 - Wavelength $U_c = 840\text{nm}$
 - RIN (OMA) = -128dB/Hz (3_1_16a uses -130dB/Hz)
 - MPN k (OMA) = 0.3; ModalNoisePen = 0.3dB
 - Baseline wander SD = 0.025 fraction of $\frac{1}{2}$ eye
 - $Rec_BW = 8,250\text{MHz}; Test \ Rx\ BW = 7500\text{MHz}$
 - Nominal Rx Sensitivity (OMA) = 11.1dBm
 - Power Budget $P = 8.3\text{dB}$
 - Connections $C = 2.0\text{dB}$
- Nominal: (RMS Spectral Width) $U_w = 0.65\text{nm}$ (varies)
- Nominal: $DCD_DJ = 20\text{ps}; Det. Jitter = 38\text{ps}$ (varies)
 - Maintain 1.9X ratio when they vary
- Variable: (Effective Modal Bandwidth) Eff. BWm
 - Nominal values 2000MHz-km for OM3, 4400MHz-km for OM4
- Variable: (Rise/fall) $Ts(20-80)$
- Arbitrary: Upper limit on $Pisi = 3.0\text{dB}$ (SR uses 3.6dB)
100m OM3 link motivates 35-45ps rise/fall

- RMS = 0.65nm
- Nominal: DCD_DJ = 20ps, Det. Jitter = 38ps
- Want Pisi < 3.0

100m, 2000MHz-km, 0.65nm, Det. Jitter = DCD * 1.9

Better Electrical Interface
Faster VCSELs/drivers
Sample details for 100m, OM3

- Rise/fall = 45ps
- RMS = 0.65nm

Link Power Budget and Penalties

<table>
<thead>
<tr>
<th>Description</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Distance (m)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Wavelength Range (nm)</td>
<td>840-860</td>
<td>840-860</td>
<td>840-860</td>
<td>840-860</td>
<td>840-860</td>
<td>840-860</td>
</tr>
<tr>
<td>Link Power Budget (dB)</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
</tr>
<tr>
<td>Channel Insertion Loss (dB)</td>
<td>2.36</td>
<td>2.36</td>
<td>2.36</td>
<td>2.36</td>
<td>2.36</td>
<td>2.36</td>
</tr>
<tr>
<td>Link Power Penalties (dB)</td>
<td>2.63</td>
<td>3.03</td>
<td>3.56</td>
<td>4.07</td>
<td>4.74</td>
<td>5.68</td>
</tr>
<tr>
<td>Unallocated Margin (dB)</td>
<td>3.28</td>
<td>2.87</td>
<td>2.35</td>
<td>1.83</td>
<td>1.16</td>
<td>0.22</td>
</tr>
<tr>
<td>Pisi (dB)</td>
<td>1.80</td>
<td>2.07</td>
<td>2.38</td>
<td>2.64</td>
<td>2.94</td>
<td>3.27</td>
</tr>
<tr>
<td>DCD_DJ (ps)</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>23</td>
</tr>
</tbody>
</table>

Transmit Characteristics

<table>
<thead>
<tr>
<th>Description</th>
<th>10.3125</th>
<th>10.3125</th>
<th>10.3125</th>
<th>10.3125</th>
<th>10.3125</th>
<th>10.3125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Speed (Gbaud)</td>
<td>840</td>
<td>840</td>
<td>840</td>
<td>840</td>
<td>840</td>
<td>840</td>
</tr>
<tr>
<td>Wavelength (nm)</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>RMS Spectral Width (nm)</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>Max Avg Launch Power (dBm)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Avg Launch Power (dBm)</td>
<td>-3.0</td>
<td>-3.0</td>
<td>-3.0</td>
<td>-3.0</td>
<td>-3.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>Optical Mod. Amp. (mW)</td>
<td>0.521</td>
<td>0.521</td>
<td>0.521</td>
<td>0.521</td>
<td>0.521</td>
<td>0.521</td>
</tr>
<tr>
<td>Extinction Ratio (dB)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Varying DCD_DJ and Det. Jitter

Example values, not min or max
Jitter and rise/fall tradeoff for 100m, OM3

- Spectral width has negligible effect due to short distance
- Motivates a TWDP to combine the effects of rise/fall, jitter

![Graph showing the relationship between DCD, DJ, and rise/fall times for different spectral widths. The graph includes data points for 0.01nm, 0.25nm, 0.45nm, and 0.65nm spectral widths with DCD*1.9 as the detection jitter term.]
100m on OM2, OM3, OM4, OMX

- Rise/fall = 45ps
- Not very sensitive to modal bandwidth >1500 MHz=km
- Underscores dominance of r/f, jitter to penalties
100m sensitivity to modal bandwidth

- OM3: Res. Launch → 2000MHz-km; OFL → 1500MHz-km
- 1500MHz-km vs 2000MHz-km requires
 ~2ps faster rise/fall OR ~2ps less DCD_DJ

Modal Bandwidth (MHz-km)
≥100m reach on OM3 MMF

- Pisi=3.0 for all points except one (where rise/fall <30ps)
- DCD_DJ = 20ps, Det. Jitter = 38ps

![Graph showing RMS Spectral Width vs. Rise/Fall for different distances and OM3 values.](image)
≥100m reach on OM4 MMF

- Points above black dashed line at Pisi = 3.0
- Points below black dashed line at Margin = 0.0
250m OM4 sensitivity to modal bandwidth

- 3500MHz-km vs 4400MHz-km requires
 ~2ps faster rise/fall time OR ~2ps less DCD_DJ
Details for 250m, OM4

- ISI and margin limits are balanced when RMS spectral width = 0.45nm and rise/fall = 40.8ps

Link Power Budget and Penalties

<table>
<thead>
<tr>
<th>Description</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Distance (m)</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Fiber Modal BW (MHz-km)</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
</tr>
<tr>
<td>Wavelength Range (nm)</td>
<td>840-860</td>
<td>840-860</td>
<td>840-860</td>
<td>840-860</td>
<td>840-860</td>
<td>840-860</td>
</tr>
<tr>
<td>Link Power Budget (dB)</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
<td>8.3</td>
</tr>
<tr>
<td>Channel Insertion Loss (dB)</td>
<td>2.91</td>
<td>2.91</td>
<td>2.91</td>
<td>2.91</td>
<td>2.91</td>
<td>2.91</td>
</tr>
<tr>
<td>Link Power Penalties (dB)</td>
<td>4.82</td>
<td>4.82</td>
<td>4.95</td>
<td>5.31</td>
<td>5.36</td>
<td>5.36</td>
</tr>
<tr>
<td>Unallocated Margin (dB)</td>
<td>0.54</td>
<td>0.54</td>
<td>0.41</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Pisi (dB)</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.63</td>
<td>1.86</td>
</tr>
<tr>
<td>DCD_DJ (ps)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Transmit Characteristics

<table>
<thead>
<tr>
<th>Description</th>
<th>10.3125</th>
<th>10.3125</th>
<th>10.3125</th>
<th>10.3125</th>
<th>10.3125</th>
<th>10.3125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Speed (Gbaud)</td>
<td>840</td>
<td>840</td>
<td>840</td>
<td>840</td>
<td>840</td>
<td>840</td>
</tr>
<tr>
<td>Wavelength (nm)</td>
<td>46.6</td>
<td>44.9</td>
<td>43.2</td>
<td>40.8</td>
<td>33.6</td>
<td>15.0</td>
</tr>
<tr>
<td>Trise / Tfall (20%-80%) (ps)</td>
<td>0.01</td>
<td>0.25</td>
<td>0.35</td>
<td>0.45</td>
<td>0.55</td>
<td>0.65</td>
</tr>
<tr>
<td>RMS Spectral Width (nm)</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>Optical Mod. Amp. (mW)</td>
<td>0.521</td>
<td>0.521</td>
<td>0.521</td>
<td>0.521</td>
<td>0.521</td>
<td>0.521</td>
</tr>
<tr>
<td>Extinction Ratio (dB)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Example values, not min or max

Pisi limited

Margin limited

IEEE Plenary P802.3ba, March 17-20, 2008
Observations

• 35-45ps rise/fall is “sweet spot” for 100m over OM3, and >100m links over OM3 and OM4
• Key parameters for 100m on OM3: rise/fall and jitter
 • Connector loss, max optical power also important
• ≥150m on OM3 links appear feasible for RMS≤0.65nm
• Tradeoffs among rise/fall, jitter, spectral width, and modal bandwidth expand the product space for parallel MMF without compromising the low-cost benefits of the 100m, OM3 objective
• ≥250m on OM4 links appear feasible for RMS≤0.45nm

• Compared to SMF links, the >100m links would provide significant savings in cost and power dissipation, while enabling higher density and faster time to market