HSE OTN Support

Qiwen Zhong
Qiuyou Wu
WB Jiang
Huawei Technologies
IEEE 802.3ba Task Force, 18-20 March 2008
Content

• Bit transparency requirement
• Skew accumulation issue
• Lane independent transport & 2x skew tolerance
Transparency Requirement Addressed by duelk_01_0707

- Ethernet service transparency options over OTN
 - Bit transparency, PCS codeword transparency, MAC Frame transparency
- OTN as a Service Layer should provide various levels of transparency for Ethernet over OTN, especially the Bit Transparency

In a real world, different private applications will be required, bit transparency should be ensured both in IEEE and ITU-T

Why Customers ask for Bit-Transparent Backhauling?

1. Preamble or IFG have been used for carrying proprietary non-standard OAM or other type of information
2. L2 encrypted signals are used instead of standard Ethernet signaling, not allowing for frame-based mapping into transport containers
3. “Don’t touch my bits” - 802.3 is a LAN technology in which it is not clearly defined which bits belong to a client or to a server and which of them need to be carried across a 3rd party (provider) network
4. “Synchronous Ethernet”
5. Error monitoring of client signals, e.g., remote defect indication

In a perfect world there probably wouldn’t be a requirement for bit-transparent backhauling and frame-based mapping would be sufficient!
Bit Transparency Requirement for 40GE/100GE

- Bit transparency requirement for 40GE/100GE has been discussed both in IEEE and ITU-T. ODUk-Xv or ODU4 (possible ODU3e for 40GE) will meet the Bit Transparency requirement for 40GE/100GE!

- Transcoding will provide PCS Codeword Transparency of 40GE over standard ODU3 right now.

Difference between 40 GbE and 100 GbE (Provider Perspective)

<table>
<thead>
<tr>
<th>40 Gigabit Ethernet</th>
<th>100 Gigabit Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>40G transport networks have been on the market for six years now</td>
<td>No existing 100G transport network</td>
</tr>
<tr>
<td>40G (OTU3) transport equipment is shipping today in growing volumes</td>
<td>ITU-T SG15 decided in June 2007 to extend G.709 to the next higher rate</td>
</tr>
<tr>
<td>By 2010 there will be large installed OTU3 WDM infrastructure in most provider networks</td>
<td>ITU-T SG15 is monitoring the HSSG/TF activities and will define an ODU4 rate that is sufficiently large for bit-transparent backhauling of 100 GbE</td>
</tr>
<tr>
<td>Bit-transparent backhauling of 40 GbE clients will be required with existing OPU3 payload rates!</td>
<td></td>
</tr>
</tbody>
</table>

From duelk_01_0707
Bit Transparent Mapping of 100GE&40GE

For 100GE
- \(k=2, X=11 \) (ODU2-11v)
- \(k=3, X=3 \) (ODU3-3v)
- ODU4

For 40GE
- \(k=2, X=5 \) (ODU2-5v)
- ODU3e
PCS Transparent Mapping of 100GE&40GE

For 100GE
- \(k=2, X=11 \) (ODU2-11v)
- \(k=3, X=3 \) (ODU3-3v)
- ODU4

For 40GE
- \(k=2, X=5 \) (ODU2-5v)
- ODU3e
Content

• Bit Transparency Requirement
• Skew accumulation issue
• Lane independent transport & 2x skew tolerance
Understand the History: Local 10GE over OTN Interconnect

- There have been too many options (standard or non-standard) to map 10GE LAN signal for transporting over OTN in ODU2/ODU2e. Different vendors/transport service providers use different approaches to carrying 10GE LAN signals. 10GE LAN interface has been the most common interface for multi-OTN domain interconnections.
 - Multiple mapping, de-mapping & re-mapping operations → High complexity for an OTN service interface line card
 - Not end-to-end solution → No end-to-end Monitoring for such long distance transport service. Each domain manages and operates its own section of a service link.
- “Appropriate Support for OTN” objective should consider to reduce this type of inconvenience.
- Are we expecting any such situation in HSE (40G/100G)?

![Diagram of OTN domains and mapping]

MAC Frame GFP Mapping in ODU2
10GE transparently Mapping in ODU2e
10GE signal Private Mapping in ODU2
Multi-Lane Data Traversing Multiple OTN Domains

• Multi-lane interface for multiple OTN domain interconnections
 - Multi-lane PHY Lane-to-Lane skew compensation is required, otherwise, the multi-lane link Lane-to-Lane skew will accumulate:
 • Increase OTN line card complexity due to mapping and de-mapping of 40GE/100GE.
 • De-skew requirement at the mapping side introduces special de-skew logic and buffer
 • 64/66b codeword based de-skew requires 64/66b Block sync process, thus it is required to run sync state machine.
 - Not end-to-end Bit Transparency
 • Multiple OTN domain architecture cannot support end-to-end bit agnostic transparency as de-skewed and re-generated HSE signal will not be the original signal any more.

• OTN NNI Interface for multiple OTN domains interconnection
 - 40GE/100GE is considering to "provide appropriate support for OTN”.
 - Multi-domains as a large OTN network may support end-to-end transport service.
 - Standard mapping for HSE to be transported over OTN will be supported.
Multi-Lane Data Traversing Multiple OTN Domains

Option Solution 1
- PCS transparency
- Skew Accumulation

Option Solution 2
- Bit Transparency
- One or Two uniform standard mapping option

A single large OTN domain
- TCM
- HSE transparently Mapping
Content

• Bit Transparency Requirement
• Skew accumulation issue
• Lane independent transport & 2x skew tolerance
Bit Transparency and Lane-Independent Transport

- Considerations of Bit Transparency lead to lane-independent transport mode at CTBI interface for 100GE and 40GE
 - Simple Implementation and low complexity (cost)

- Option to handle skew accumulation over HSE LAN
 - 2X Skew tolerance
 - Use OTN link for OTN inter-domain interconnection
Independent Transport for PBL

No need to deskew the LAN lanes at OTN ingress; No need to recover 64B/66B for each lane in the OTN node; 10 timeslots for 10 CTBI bit-streams, The same method for serial 100GE (10 timeslots for 10 CTBI); Bit transparency transport;

Skew introduced by OTN domain will be compensated by VCAT or ODU4
Independent Transport for MLD

- No need to deskew the LAN virtual lanes at OTN ingress; No need to recover 64B/66B from each virtual lane in the OTN node; 10 timeslots for 10 CTBI bit-streams, The same method for serial 100GE (10 timeslots for 10 CTBI); Bit transparency transport;
- Skew introduced by OTN domain will be compensated by VCAT or ODU4
Lane-Independent, Common OTN for 100&40&10GE

- Single MAC/PCS definition/chip design for 100GE, 40GE, and 10GE should be considered.
- “Lane-Independent model” enables OTN system to provide comparable implementation of 100GE&40GE&10GE transport service over a common platform, thus reducing complexity.
- Enable low cost Multi-chip FPGA etc. using programmable chip for early implementation to support 100GE, 40GE and 10GE over OTN.
LAN Interface Skew Tolerance: 1x vs. 2x

<table>
<thead>
<tr>
<th>PMD type</th>
<th>1x Skew (Per Lane)</th>
<th>1x Buffer Size (Per Lane)</th>
<th>2x Buffer Size (Per Lane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40GE 4x10G MMF 100m</td>
<td>4 ribbon fiber, 850nm</td>
<td>1.94ns (#1) 20 UI</td>
<td>20 Bits</td>
</tr>
<tr>
<td>100GE 10x10G MMF 100m</td>
<td>10 ribbon fiber, 850nm</td>
<td>151.4 UI (#3) 152 Bits</td>
<td>2x152 Bits</td>
</tr>
<tr>
<td>40GE 4x10G MMF 100m</td>
<td>4 ribbon fiber, 850nm</td>
<td><<10ns (#2) 100 UI</td>
<td>100 Bits</td>
</tr>
<tr>
<td>100GE 10x10G MMF 100m</td>
<td>10 ribbon fiber, 850nm</td>
<td>151.6 UI (#4) 152 Bits</td>
<td>2x152 Bits</td>
</tr>
<tr>
<td>100GE 4x25G SMF 40km</td>
<td>IEEE LX4 CWDM (1275.7, 1300.2, 1324.7, 1349.2nm)</td>
<td>9.1 UI (#5) 12 Bits</td>
<td>2x12 Bits</td>
</tr>
<tr>
<td></td>
<td>ITU-T CWDM near 1310nm (1291,1311,1331,1351 nm)</td>
<td>151.6 UI (#4) 152 Bits</td>
<td>2x152 Bits</td>
</tr>
<tr>
<td></td>
<td>ITU-T DWDM 400G Grid Near 1310nm (1308-1316 nm)</td>
<td>9.1 UI (#5) 12 Bits</td>
<td>2x12 Bits</td>
</tr>
</tbody>
</table>

Note: The Total Link Skew Compensation Buffer RAM Size Requirement = Lane # x PerLaneSkewUI

(1)(2) MMF Ref: nishimura_01_0906, nishimura_01_1106. The Experimental Result is 5.8ns@300m, or 1.94ns@100m; In nishimura_01_1106, the max skew is <<30ns@300m, while 30ns is the limit of a ribbon fiber skew. Here we assume that 5.8ns@300m is more reasonable.

(3)(4)(5) SMF Ref: anslow_02_1107.pdf, anslow_03_1107.xls. The spreadsheet includes the above three WDM options. The values (3), (4),(5) are obtained based the spreadsheet.
Worst Case 2x Buffer Size Example (4x25G)

- Max 2x Buffer RAM Size per Lane \rightarrow (2x152=304bit ~ 320bit) ~ 40 Bytes
 - If a compensation module Digital Logic clock is 312.50 MHz (80bit x312.5MHz=25G)
 - The Buffer width is 10byte, and a 40 bytes buffer should have a depth of 4.
 - If a compensation module Digital Logic clock is 156.25 MHz (160bit x156.25MHz=25G)
 - The Buffer width is 20byte, and a 40 bytes buffer should have a depth of 2.
- At the multi-lane HSE receiver side, the multi-lane skew compensator will normally have a de-skew buffer far greater than what we have calculated here
 - Memories in field are normally organized in terms of fixed sizes (256/2k/128k/2M Bytes)
 - A 4-lane de-skew buffer will easily exceed the small depth requirement of 2, 3 or even 4.
Skew Tolerance and Compensator Buffer Size

- Worst case 2x Skew Tolerance ~2x152UI ~ 320 UI = 40 Bytes
- Take 256 bytes Memory Granularity for example, single Granularity Per lane will have a 12x Skew Tolerance. This Skew Tolerance will double when the memory block number increases.
Summary and Proposals

✔ OTN link may be used for OTN Multi-domain interconnections

✔ Propose to include both Lane-Independent and Lane-Aggregate transport models to meeting different requirements for multi-lane HSE over OTN

✔ Lane Independent Transport is bit transparency oriented, and is simpler to implement than Lane-aggregate Transport

✔ Propose to support at least 2x skew tolerance at the HSE multi-lane receiver side
Thank You