40Gbe Backplane Considerations

Andre Szczepanek
Texas Instruments
a-szczepanek@ti.com
Supporters

- Arthur Marris – Cadence
- Ilango Ganga - Intel
What Backplane wants

• Maximum Re-use of 10GBASE-KR and associated IP
 – AN, FEC, TxEQ training

• Simple PCS that leverages existing 10GBASE-R IP
 – Proposed PCS solutions all appear overkill for backplane use
 – Would prefer simpler solution like a 64B/66B sync based alignment
10GBASE-KR reuse

- Extend Clause 73 Auto-Negotiation to 40Gbe
 - Straightforward, just need to add a technology ability bit
 - More an editorial/administrative task than a technical one
 - Use 10GBASE-KX4 AN as model.
 - Single channel (0) used to negotiate
 - Similar to 10GBASE-KR, make AN mandatory at 40G to avoid use of parallel detection

- Transmit equalizer training
 - Re-use 10GBASE-KR training
 - Mandate inter-lane randomness
 - The definition of training frame PRBS seeding already does this
 - Link will not be up until all lanes complete equalizer training

- FEC
 - The FEC is designed as a generic sub-layer below the 10GBASE-R PCS
 - Provides agnostic transport of 64B/66B code words
 - Can easily be used with either direct PCS output or striped 64B/66B
 - Error correction could be difficult to implement at non-striped rates
 - An Error-correction disabled option would allow FEC coding to be used for alignment without the penalty of FEC correction latency
64B/66B Sync based alignment

• The 64B/66B Sync bits can deskew 32UI

• Backplane link skew sources
 – Transmit SERDES
 – Backplane including connectors
 – Receive SERDES
 – Receive re-alignment

• This scheme could also be used as the basis of a XLAUI or CAUI extender interface
 – XLAUI/CAUI will be less demanding than backplane
 • 10inch, 1 connector vs 40inch 2 connectors
Transmit SERDES skew

- With appropriate design SERDES inter-lane transmit skew can be limited to analog skews
 - <1UI
 - Need to sync digital stages between lanes
- Where this has not been done we have seen up to 4UI of digital skew (in addition to the analog skew)
Backplane skew

• Backplane skew is caused by differences in channel length between the channels on
 – The line card
 – The connectors
 – The Backplane

• Total backplane channel length is ≤ 40 inches (1m)

• At 10Gbps 1inch of FR4 has <200ps or ~ 2UI of delay
 – 12UI of backplane skew budget would allow for 6inches of channel length variation between channels (15%)
 – Typical backplane interchannel skew is <1ns (10UI)
 – Need input from more backplane manufacturers
Receive SERDES skew

• Analog skews
 – <1UI

• Quantization skew
 – Each lane deserializes data into words, each with its own word clock
 – Even if the word clocks are closely aligned, Sync bits may fall into different words due to other skews
 • This is seen as an effective skew of the word width
 • For wide buses, this can be significant (32bit) or prohibitive (64bit)
Alignment skew

- SERDES receive data must be gearboxed to the 66bit symbol width and aligned to symbol boundaries
 - If the gearbox and aligner are not combined then there can be up to 66 bits of quantization skew
 - If gearbox and aligner are combined the quantization skew is limited to the SERDES word size
Avoiding Quantization skew

• SERDES with bus width = 66/n, and “jog”
 – Aligning the bus width with the symbol width and allowing the deserializer position to be “jogged” removes quantization skew
 • Commonly used for 8B/10B with a 10bit or 20bit word width.
 – Unfortunately 11,22,33, or 66bits are not common SERDES bus widths!

• Asynchronous Gearbox/Aligner
 – If the SERDES bus to 66bit bus gearbox is built as an asynchronous bit-wide circular FIFO with built in alignment mux, the quantization skew will be removed.
 • The gearbox is effectively a bit wide FIFO
 – loaded SERDES bus width bits at a time
 – unloaded 66bits at a time at a 0 to 65bit offset
 • Because the data has effectively been re-serialized the quantization is removed
 • The 66bit output word is offset (based on 10GBASE-R lock SM) to align to the Sync bits
Is 32UI enough for backplane applications?

- **YES**, 64B/66B sync based alignment is sufficient for Backplane applications
 - 32UI of budget is adequate as long as quantization skew is managed
 - Receive path MUST be designed to limit quantization skew
 - Note that although 64B/66B has the ability to remove 32UI in either direction from a mid-skew position, we can’t control skew distribution so individual skews must be limited to 32UI
Proposed 64B/66B alignment skew budget

- Transmit SERDES (Analog)
 - 2UI
- Backplane including connectors
 - 12UI
- Receive SERDES (Analog)
 - 2UI
- Receive gearbox & re-alignment (quantization skew)
 - 16UI

 ===
 32UI
 ===

- Assumptions
 - 16bit SERDES bus @644Mhz is practical in modern Si processes
 - Same as XSBI rate
 - SERDES with data widths wider than 16bits will have to limit quantization skew to 16 bits
Standardizing 64B/66B alignment

- Similar standards only specify electrical (backplane) skew
 - cf SFI4.2
 - They do not specify how implementations allocate rest of available budget
 - This allows maximum implementation flexibility

- Propose we require 12UI of skew tolerance at receiver
- We should also consider specifying maximum inter-lane skew for the channels
 - Although there is no normative 802.3ap channel, differential pair skew was specified.
Conclusions

• Initial skew numbers indicate 64B/66B alignment is sufficient for Backplane skew
 – And therefore also sufficient for XLAUI & CAUI

• 64B/66B Sync alignment allows a simple PCS that leverages existing 10GBASE-R IP
 – Simple 64B/66B word distribution
 • No lane markers or alignment symbols

• 64B/66B Sync alignment is a sub-set of MLD
 – MLD distribution without alignment markers