Common Pluggable Interface
For 100GBASE-CR10 & 100GBASE-SR10

John Petrilla, Avago Technologies
Galen Fromm, Molex
May 2009
Supporters

• Peter Pepeljugoski - IBM
• Tom Palkert - Luxtera
• Chris Cole – Finisar
• Jaya Bandyopadhyay – Juniper
• Alan Benner - IBM
• Gourgen Oganessyan – Quellan
• Jonathan King – Finisar
• Scott Kipp – Brocade
• Steve Swanson - Corning
• Doug Coleman - Corning
• Jim McGrath – Cinch Connectors
• Merrick Moeller – Cinch Connectors
• Vittal Balasubramanian - FCI
• Ali Ghiasi – Broadcom
• Paul Kolesar - Commscope
Outline

• Objectives
• Opportunity - Reuse twelve-lane form factor
• Issue – Lane selection in twelve-lane form factor for ten-lane applications
• Recommendation

• Addresses D2.0 comment 609
Objectives

• Enable a common pluggable interface for interconnect variants (copper cable assemblies, active cable assemblies and fiber optic transceivers) using a twelve-lane form factor,

• Minimize complexity for ASIC, host board, module and assembly design

• Minimize time-to-market and development cost

• Maximize cable plant performance/reliability
Introduction

A form factor in development within the InfiniBand Trade Association (IBTA) ElectroMechanical Working Group (EWG) supports up to 12 lanes of media including copper, optics and active cable assemblies at 10 GBd signal rates. The electrical interface is based on a two-high, stacked, edge-connector similar to that for PCI Express x16. It offers high port density (27 mm pitch) but has limited power dissipation (< 6 W).

Although not explicitly mentioned, the SFF-8642 connector, the required 100GBASE-CR10 connector, was initially defined for this twelve-lane form factor.

Above, copied with permission, is Figure 1, from ‘120 Gb/s 12x Small Form-factor Pluggable (CXP) Interface Specification for Cables, Active Cables & Transceivers, Version 0.7, March 4’, 2009. The figure on the right is from ‘P802.3ba-D2.0’, Figure 85-15 with contacts labels modified to match SFF-8642.
Opportunity

A common pluggable interface simplifies equipment design since a single port can support multiple media.

Developing and/or using a new form factor is time consuming and expensive – something to avoid.

Additional volume from multiple applications lowers costs – something to embrace.

The SFF-8642 host board connector is used in 100GBASE-CR10 and the twelve-lane form factor can be a common pluggable interface for copper and active cable assemblies and transceivers.

An opportunity exists to reuse a form factor under development for another application. Taking advantage of this opportunity reduces the time to market and eliminates the development costs associated with creating and learning to use a new form factor. The combined volume for both applications also promises economy-of-scale benefits. The popularity of SFP+ and QSFP offer good examples of form factors that support multiple media and applications.
Issue

Since 100GBASE-CR10 and 100GBASE-SR10 only use ten of the twelve lanes available lanes in an emergent form factor, a key item is to identify which ten to use. Choosing a common set of lanes for copper and optical variants will enable its reuse for 100GBASE-CR10 and 100GBASE-SR10 applications with minimum additional effort for ASIC and host board designers. Failure to use a common set would be problematic and frustrating for host ASIC and board designers.

If a common set of ten is not used, the host board designer has onerous choices:
- dedicate some specific ports to copper variants and others to optical variants
- route eleven lanes to all ports and require that the ASIC adapt to the variant that is eventually inserted.

If a common set is used, equipment can be more readily designed to have field-configurable ports providing media flexibility to end users.

 Already possible

Should be possible

• Using the same 10 of the 12 possible lanes for 10GBASE-SR10 and 10GBASE-CR10 provides a significantly more attractive common pluggable interface.

• A common pluggable interface simplifying equipment design and field-configurable ports providing end-user media flexibility will enlarge the market and accelerate market adoption.

Quebec May 2009
Recommendation for 10-Lane CXP Applications (1)

- For ribbon fiber using the middle lanes may reduce variability in insertion loss.
- For copper cable assemblies using the middle lanes centers the conductor bundle, balancing strain relief across the differential pairs.
- Consequently, these outer lanes, lanes 0 and 11 in a twelve lane assembly, are the most logical to have inactive in 10-lane applications.
- For optical modules, de-activating the same lanes in the electrical interfaces (TP1 & TP4) as in the optical interfaces (TP2 & TP3) permits maintaining lane mapping between electrical and optical interfaces and enabling a common design that supports multiple applications.
The above image is an excerpt from 802.3ba draft 2.0 showing the choice made in Clause 86. Only the recommended option of the three options in Figure 86-15 is shown. The other two options use two single-row connectors.

The advantages if all variants, copper, active cable assemblies and fiber optics, adopt the above lane selection include:

• Less complicated ASIC – same 10 lanes used for all variants, only 10 lanes require support
• Less complicated host board design – same 10 lanes used for all variants, only 10 lanes require support
• Less complicated modules – mapping between inputs and outputs maintained between 10 lane and 12 lane applications, simplifying a common build standard and lowering costs
• Increased cable plant performance/reliability – for ribbon cables the outmost lane members see the most stress and exhibit the most variability in insertion loss and highest attenuation
• Larger market and earlier adoption – reduced ASIC & equipment design complexity and increased network media flexibility for end user
Conclusions & Recommendations

Conclusion:

• A form factor that supports the most popular media for data centers and supercomputers offers advantages to most stakeholders and will be very attractive.

Recommendation:

• In Clause 85 replace Table 85-11 with the table shown on the following page.

Summary of changes to Table 85-11:

• For connector row B, left contacts B2 and B3 (corresponding to Tx lane 0 in 12-lane set numbered from 0 to 11) unused and included B17 and B18 instead.

• For connector row D, left contacts D2 and D3 (corresponding to Rx lane 0 in 12-lane set numbered from 0 to 11) unused and included D17 and D18 instead.

• Relabeled Tx and Rx lanes to run from 0 through 9 instead of from 0 through 1 and 3 through 10. Tx lane 0 now maps to contacts A2 and A3 and Rx lane 0 now maps to contacts C2 and C3.

• Changed all entries of “signal gnd” to “Signal shield” to be consistent with Figure 85-2.

• Replaced the term pin with contact since this connector has no pins.
Recommendation: Replace Table 85-11 with the following

Table 85-11 – 100GBASE-CR10 lane to MDI connector contact mapping

<table>
<thead>
<tr>
<th>Tx lane</th>
<th>MDI connector contact</th>
<th>Tx lane</th>
<th>MDI connector contact</th>
<th>Rx lane</th>
<th>MDI connector contact</th>
<th>Rx lane</th>
<th>MDI connector contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal shield</td>
<td>A1</td>
<td>Signal shield</td>
<td>B1</td>
<td>Signal shield</td>
<td>C1</td>
<td>Signal shield</td>
<td>D1</td>
</tr>
<tr>
<td>SL0<p></td>
<td>A2</td>
<td>SL1<p></td>
<td>B2</td>
<td>DL0<p></td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL0<n></td>
<td>A3</td>
<td>B3</td>
<td>DL0<n></td>
<td>C3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal shield</td>
<td>A4</td>
<td>Signal shield</td>
<td>B4</td>
<td>Signal shield</td>
<td>C4</td>
<td>Signal shield</td>
<td>D4</td>
</tr>
<tr>
<td>SL2<p></td>
<td>A5</td>
<td>SL2<p></td>
<td>B5</td>
<td>DL2<p></td>
<td>C5</td>
<td>DL1<p></td>
<td>D5</td>
</tr>
<tr>
<td>SL2<n></td>
<td>A6</td>
<td>SL2<n></td>
<td>B6</td>
<td>DL2<n></td>
<td>C6</td>
<td>DL1<n></td>
<td>D6</td>
</tr>
<tr>
<td>Signal shield</td>
<td>A7</td>
<td>Signal shield</td>
<td>B7</td>
<td>Signal shield</td>
<td>C7</td>
<td>Signal shield</td>
<td>D7</td>
</tr>
<tr>
<td>SL4<p></td>
<td>A8</td>
<td>SL3<p></td>
<td>B8</td>
<td>DL4<p></td>
<td>C8</td>
<td>DL3<p></td>
<td>D8</td>
</tr>
<tr>
<td>SL4<n></td>
<td>A9</td>
<td>SL3<n></td>
<td>B9</td>
<td>DL4<n></td>
<td>C9</td>
<td>DL3<n></td>
<td>D9</td>
</tr>
<tr>
<td>Signal shield</td>
<td>A10</td>
<td>Signal shield</td>
<td>B10</td>
<td>Signal shield</td>
<td>C10</td>
<td>Signal shield</td>
<td>D10</td>
</tr>
<tr>
<td>SL6<p></td>
<td>A11</td>
<td>SL5<p></td>
<td>B11</td>
<td>DL6<p></td>
<td>C11</td>
<td>DL5<p></td>
<td>D11</td>
</tr>
<tr>
<td>SL6<n></td>
<td>A12</td>
<td>SL5<n></td>
<td>B12</td>
<td>DL6<n></td>
<td>C12</td>
<td>DL5<n></td>
<td>D12</td>
</tr>
<tr>
<td>Signal shield</td>
<td>A13</td>
<td>Signal shield</td>
<td>B13</td>
<td>Signal shield</td>
<td>C13</td>
<td>Signal shield</td>
<td>D13</td>
</tr>
<tr>
<td>SL8<p></td>
<td>A14</td>
<td>SL7<p></td>
<td>B14</td>
<td>DL8<p></td>
<td>C14</td>
<td>DL7<p></td>
<td>D14</td>
</tr>
<tr>
<td>SL8<n></td>
<td>A15</td>
<td>SL7<n></td>
<td>B15</td>
<td>DL8<n></td>
<td>C15</td>
<td>DL7<n></td>
<td>D15</td>
</tr>
<tr>
<td>Signal shield</td>
<td>A16</td>
<td>Signal shield</td>
<td>B16</td>
<td>Signal shield</td>
<td>C16</td>
<td>Signal shield</td>
<td>D16</td>
</tr>
<tr>
<td>A17</td>
<td>SL9<p></td>
<td>B17</td>
<td>C17</td>
<td>DL9<p></td>
<td>D17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A18</td>
<td>SL9<n></td>
<td>B18</td>
<td>C18</td>
<td>DL9<n></td>
<td>D18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal shield</td>
<td>A19</td>
<td>Signal shield</td>
<td>B19</td>
<td>Signal shield</td>
<td>C19</td>
<td>Signal shield</td>
<td>D19</td>
</tr>
</tbody>
</table>