TP1 and TP4 testing with compliance boards

Mike Dudek JDSU
Piers Dawe Avago Technologies

IEEE 802.3ba interim Seoul, Korea Sept 2008
Supporters

- John Petrilla Avago Technologies
- Petar Pepeljugoski IBM
- Ali Ghiasi Broadcom.
Method typically used for 1GBE

- **Host test**

- **Module test**

The exact positions of TP1 and TP4 were not well specified in Clause 38
Comments on previous slide method

- The assumption is that TP1 is equivalent to B on the host testing and B’ on the module testing and TP4 is equivalent to C on the host C’ on the module. Assumes that the connectors and compliance boards are perfect and lossless
 - OK assumption at 1 GBd, very poor at 10 GBd
- De-embedding the compliance boards is extremely difficult for the key parameters for optical systems
 - jitter including total jitter
 - Eye mask including noise effects
- De-embedding using standard microwave techniques can be used for S-parameter measurements but for simplicity and consistency it is better not to do this for these parameters for the optical system
Purpose of test points

- For compliance testing
 - Must be accessible
 - S-parameters e.g. reflection, transmission specs of a cable
 - Microwave de-embedding is feasible; measurement can be done at a distance to specification point
 - Including sensitivity, eye diagrams and similar with nonlinear electrical-optical converters (PMDs, optical modules)
 - Microwave style de-embedding is not feasible

- For interoperability
 - Must be related to connectors

- For precise results
 - As frequencies increase and higher performance product is specified, have to be more particular about test point definition
Method used in SFF8431(SFP+) and Fibre Channel

- For Outputs: Measure and specify the signals with the compliance board in place.
- For inputs: Calibrate the signals with both compliance boards in place, making the signal more similar to the test for the output signal.
- Compliance boards have fully specified 4 port differential S parameters including crosstalk.

Note for simplicity in the following diagrams the counter-flow signals that create crosstalk are not shown. However in practice they are included.

References.
- SFF-8431 (ftp://ftp.seagate.com/sff/)
TP1, TP2, TP3, TP4 in Clause 38 (Gigabit Ethernet) is well known
- TP1, electrical: host output, module input
- TP2, module optical output
 - Actually, 2 m after the MDI
- TP3: module optical input
- TP4, electrical: module output, host input
- TP0, TP5 have been used informally for a some time (at IC within host)

Clause 39, CX4, also has TP1, TP2, TP3, TP4 (all electrical)
- TP1: upstream of transmit MDI
- TP2: just downstream of transmit MDI
- TP3: just upstream of receive MDI
- TP4: downstream of receive MDI

"It is expected that in many implementations TP1 and TP4 will be common between 1000BASE-SX (Clause 38), 1000BASE-LX (Clause 38), and 1000BASE-CX"
Fibre Channel up to 4GFC has alpha gamma delta ($\alpha_T \delta_T \gamma_T \gamma_R \delta_R \alpha_R$)
- For an optical link,
- α_T: Output of IC in host
- δ_T: host output, module input, just downstream of module transmit electrical connector
- γ_T: module optical output, 2 m after the MDI
- γ_R: module optical input
- δ_R: module output, host input, just downstream of module receive electrical connector
For 8GFC, "just downstream" is taken to mean the input or output of a compliance board with a defined electrical loss
- SFP+ is the same as 8GFC but with different names
- XFP is an earlier, less thorough, version of SFP+
Example for Host output/module input

- **Host output test:**

- **Module input test calibration:**

- **Module test:**

 - Advantage: By specifying the input signal calibration at B” the connector and compliance test board degradations are calibrated out
 - Note that change from calibration to test requires no disconnection of SMA connections

TP1 and TP1a are 802.3ba nomenclature
B, B’ and B” are SFP+ (SFF8431)
Example for module output/host input

- **Module output test:**

- **Host input test calibration:**

- **Host test:**

 - Advantage: By specifying the input signal calibration at C” the Connector and compliance test board degradations are calibrated out
 - Note that change from calibration to test requires no disconnection of SMA connections

TP4 and TP4a are 802.3ba nomenclature
C, C’ and C” are SFP+ (SFF8431)
Test points for different sublayers 1/2

- Untimed optical module
 - Use methodology established in SFP+ and 8GFC
- 10GBASE-CR4, 10GBASE-CR10
 - Compatible with above
 - In practice, implementers can choose whether to use specified compliance boards or their own, because CR specs can be de-embedded from one end of a compliance board to the other
- Optical module with CDRs
 - Annex 153A XLAUI / CAUI (nAUI for short) is XFP's XFI electrical interface with some second thoughts
 - But it doesn't yet show the connector
 - Use same test points and electrical compliance board specs as for unretimed optical module
 - TP1 and TP4 spec numbers will differ
Test points for different sublayers 2/2

- **Other nAUI**
 - For a pair of ICs to be soldered on a board without a connector, e.g. PCS chip and FEC connected by nAUI
 - Assess the ICs on demo boards, sum of trace lengths/losses to equal or exceed target trace length/loss
 - May be able to give some credit (in extra length or loss) for the absence of a connector

- **40GBASE-KR4**
 - Have to decide if we want interoperability
 - If so, use compliance board methodology but different connectors may imply different electrical specs (e.g. for reflection and crosstalk)
 - TP0, TP5 at ASIC to be informative
 - TP1-4 related to connector, normative

- Recommend that we revisit the test point Ad Hoc to discuss this further