4x10G vs Serial 40G SerDes Maturity and Cost

IEEE 802.3ba
Interim Meeting

Seoul 2008
Ali Ghiasi
Broadcom Corporation
agheriasi@broadcom.com
List of Supporters

- Francesco Caggioni - AMCC
- Kieth Conroy – AMCC
- Howard Frazier - Broadcom
- Alessandro Barbieri – Cisco
- Paul Gavrilovic - Cisco
- Chris Cole – Finisar
- Ryan Latchman – Gennum
- Drew Perkins - Infinera
- Rick Rabinovich – Alcatel-Lucent
- Stephen Trowbridge - Alcatel-Lucent
- Siddharth Sheth – NetLogic Micro
- Jim Tavacoli – Santur
10 GbE Historical Perspective

- 10GbE Call for interest March 1999
- 10GbE study group started on June 1999
- Newport Communication introduced 1st CMOS OC-192 production XCVR July 1999
- Initial serial PMD proposal presented in IEEE HSSG Nov 1999
- IEEE 802.3ae had their 1st task force meeting March 2000
- Newport Communication was acquired by Broadcom Aug 2000
- Broadcom introduces 1st 10 GbE XAUI-serial XCVR May 2001 based on CMOS

- In IEEE 802.3 our standards are designed for high volume, low cost implementation, and are based on nearly mature technology
 - Production 10G CMOS was available when 802.3ae defined serial PMDs.
Comparisons of 40G Research Serdes vs 1st 10G Production Serdes

- 4x1 Mux, ISSCC 2005 8.2 K. Kanada
- 90 nm CMOS 20 GHz clock supplied externally, state of the art!

- Newport Com/Broadcom 0.18 um CMOS XAUI XCVR 2000.
- Production grade XCVR!
What Does Low Risk and Available Mean?

- traverso_02_0708 state the following:
 - “CMOS; Low Power CDR (73 mW) Is Available Today(*1)”
 - “45 nm CMOS is sufficient for 40 Gb/s Driver”

- (Ref 1) T. Toifle, et. al., D12-3, ISSCC2007
 - Excellent state of the art work!
 - 65 nm CMOS-SOI
 - 8x oversampled DLL with 10GHz clock externally supplied
 - No mux or 40G driver implemented (just de-mux)
 - For an open eye input the de-mux had only 11 ps eye opening!
 - Not enough jitter margin for practical transmitter + Optical TX + Fibre + Optical RX

- Ref 1 on traverso_02_0708 does not use standard CMOS and does not implement a mux/driver!
 - Uses SOI and only implement a de-mux.
OC-192 SerDes Cost Breakdown

- Primary driver for cost reduction
 - Moving from very expensive bench top testing every part to ATE
 - Yield increase
- Secondary driver for cost reduction
 - Package cost
 - Wafer cost
- Other factor contributing to cost reduction
 - Availability of SerDes from 3-5 suppliers
 - Standard CMOS
 - Volume
OC-768 SerDes Cost

- Currently OC-768 SerDes cost more than 100x an OC-192 SerDes!
- Our estimate is that OC-768 SerDes cost dominated by yield and testing!
 - It has been claimed that replacing GPPO with SMT package will result in 87% cost reduction!
 - How is this possible when the package is only 10% of the SerDes cost?
 - How is this possible when the cost is dominated by yield and testing?
- The LGA package may complicate at speed testing and lower the yield!

Figure from traverso_02_0708
Cost Comparison of OC-192 vs OC-768 SerDes

- Current OC-768 SerDes cost is >8x the OC-192 SerDes cost in 2003, both 6 years from product introduction!
 - Product shipment for OC-192 started in ~1997
 - Product shipment for OC-768 started in ~2002

* OC-768 cost was assumed to follow 28% YoY cost reduction
Summary

• Even after 6 years after OC-768 product introduction it has not yet followed OC-192 volume curve or cost reduction.
 – As result of test equipment cost, yield, skilled labor, test time, signal integrity, packaging, and requirement for esoteric processes.
 – ITU SG-15 is actually considering alternative modulation scheme with better spectral efficiency and lower Baudrate (2x20 or 4x10 Gigabud).

• Even if 87% cost reduction is possible by using LGA/BGA package for the 40G SerDes, the 40G Mux/De-Mux still will cost 6x the cost of quad CDR (see latchman_01_0908)!

• IEEE 802.3ba should standardize 4x10G SMF PMD based on maturity, low cost, technology reuse, and synergy with 4x10G/10x10G MMF PMD.