
Proposed Changes to State Diagrams

April 3, 2019

Mike Tu <u>tum@broadcom.com</u> Steven Chen <u>steven.chen@broadcom.com</u> Tom Souvignier <u>tom.souvignier@broadcom.com</u>

Introduction

- Several issues in the state diagrams were discussed in http://www.ieee802.org/3/ch/public/mar19/tu_3ch_01a_0319.pdf
- Issue 1: incorrect pcs_status
 - pcs_status set to "true" while still in the PAM2 training state
- Issue 2: long delay and incorrect link_status if link drops in data mode
 - If the PHYC enters SEND_DATA state and then the loc_rcvr_status goes down, it will take another full "maxwait_timer" expiration to restart the autoneg, while the link_status stays as OK.
- We propose the following changes to resolve these issues:
 - 1. Utilize variable "pcs_data_mode" even without optional EEE. It is set to "true" only after PHYC enters the SEND_DATA state.
 - 2. Let "pcs_status" be dependent on "pcs_data_mode"
 - **3.** Once in SEND_DATA, do not try to re-initiate another PAM2 training within PHYC state diagram. Always go through autoneg or the LINK SYNC state machine (takes ~1 msec).

pcs_data_mode

"pcs_data_mode" in Clause 55 vs. Clause 149 D1.2

- Originally defined for EEE enabled PHY only
- Clause 55
 - PMA_PCSDATAMODE: defined in 55.2.2:
 - EEE-capable PHYs additionally support the following service primitives:
 - PMA_PCSDATAMODE.indication (pcs_data_mode)
 - It appears in Figure 55-4 10GBASE-T service interfaces
 - pcs_data_mode
 - Appears in Figure 55-3 Functional Block diagram, Figure 55-5 PCS reference diagram, Figure 55-21 PMA reference diagram, and Figure 55-28 PHY Control state diagram.
 - It is defined in 55.4.5.1 State diagram variables, in the PMA, not in the PCS.
- Clause 149 D1.2
 - PMA_PCSEDATAMODE
 - Mentioned but never defined
 - Did not appear in Figure 149-3 service interfaces
 - pcs_data_mode
 - Defined in 149.3.6.2.2
 - Defined again in 149.4.4.1
 - Missing from the reference diagrams and the functional block diagrams

Add "PMA_PCSDATAMODE" to PMA service interface

- On page 74, line 22, after 149.2.2.8, insert "PMA_PCSDATAMODE.indication" based on 55.2.2.11:
 - 149.2.2.8a PMA_PCSDATAMODE.indication
 - This primitive indicates whether or not the PCS state diagrams are able to transition from their initialization states. The pcs_data_mode variable is generated by the PMA PHY Control function. It is passed to the PCS Control function via the PMA_PCSDATAMODE.indication primitive.
 - 149.2.2.8a.1 Semantics of the primitive
 - PMA_PCSDATAMODE.indication (pcs_data_mode)
 - 149.2.2.8a.2 When generated
 - The PMA PHY Control function generates PMA_PCSDATAMODE.indication messages continuously.
 - 149.2.2.8a.3 Effect of receipt
 - Upon receipt of this primitive, the PCS performs its transmit function as described in 149.3.2.2.

Make "pcs_data_mode" available with or without optional EEE

• In D1.2, 149.4.4.1, page 147, line 20 to 25:

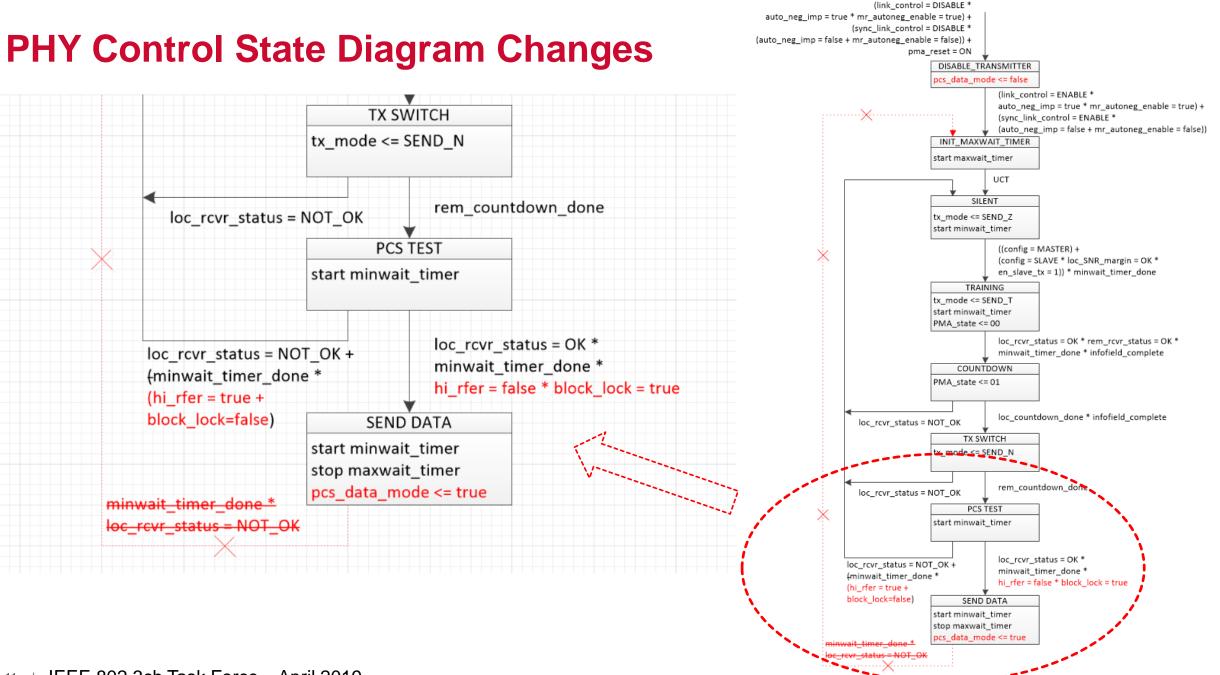
- The following variables are required for PHYs that support the EEE capability:

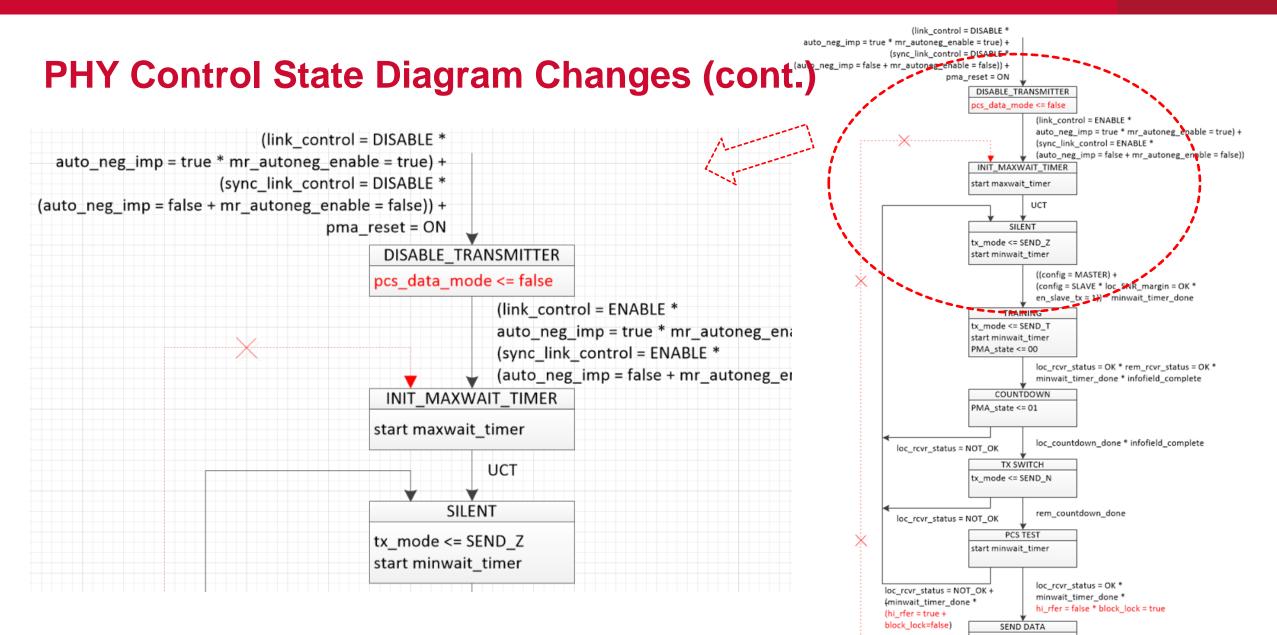
- pcs_data_mode
 - Generated by the PMA PHY Control function and indicates whether or not the local PHY may transition its PCS state diagrams out of their initialization states. The current value of the pcs_data_mode is passed to the PCS via the PMA_PCSDATAMODE.indicate primitive. In the absence of the optional EEE capability, the PHY operates as if the value of this variable is TRUE.
- In D1.2, 149.3.6.2.2, page 102, line 37 to 41:

Delete "pcs_data_mode" and the associated descriptions

Changes to Figures

- In Figure 149-2, add "pcs_data_mode" coming out of "PHY CONTROL", and enters "PCS TRANSMIT".
- In Figure 149-4, add "pcs_data_mode" entering from "PMA SERVICE INTERFACE" into the "PCS TRANSMIT". See Figure 55-5 for reference.
- In Figure 149-26, add "pcs_data_mode" coming out of "PHY CONOTRL" and going up to the PMA SERVICE INTERFACE". See Figure 55-21 for reference.
- In Figure 149-33, PHY Control State Diagram:
 - In "DISABLE_TRANSMITTER" state, add "pcs_data_mode <= false".</p>
 - In "SEND DATA" state, add "pcs_data_mode <= true".</p>

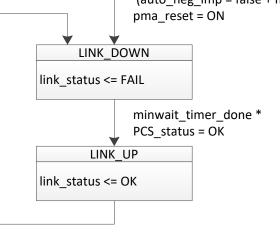



pcs_status

Redefine pcs_status

- In 149.3.7.1, page 106, line 22
- pcs_status:
 - Indicates whether the PCS is in a fully operational state. It is only true if pcs_data_mode is true, block_lock is true, and hi_rfer is false. This status is reflected in MDIO register 3.2324.10. A latch low view of this status is reflected in MDIO register 3.2323.2 and the inverse of this status is reflected in MDIO register 3.2323.7.

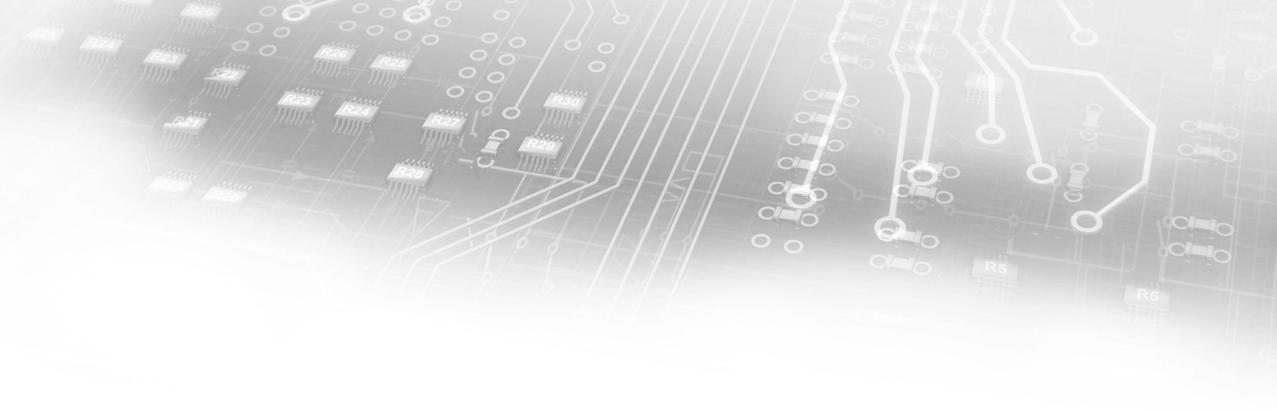
Figure 149-33 PHY Control state diagram


start minwait_timer stop maxwait_timer pcs_data_mode <= true

minwait_timer_done + [PC3_ loc_revr_status = NOT_OK

Figure 149-34 Link Monitor state diagram

Updated Figure 149-34


(link_control = DISABLE *
auto_neg_imp = true * mr_autoneg_enable = true) +
(sync_link_control = DISABLE *
(auto_neg_imp = false + mr_autoneg_enable = false)) +
pma_reset = ON

maxwait_timer_done *
(PCS_status = NOT_OK + loc_rcvr_status = NOT_OK) +
PMA_refresh_status = FAIL+
PMA_watchdog_status = NOT_OK

NOTE 1 – maxwait_timer is started in PHY Control state diagram (see Figure 149-16). NOTE 1 – The variables link_control and link_status are designated as link_control_mGigT1 and link_status_mGigT1, respectively, by the Auto-Negotiation Arbitration state diagram (Figure 98-7) if the optional Auto-Negotiation function is implemented.

- PCS_state is dependent on pcs_data_mode now. So it will enter LINK_UP only after pcs_data_mode is true
- The maxwait_timer would have been stopped when PHYC enters "SEND_DATA" state → do not check for "maxwait_timer_done".
- If link_status drops to FAIL, autoneg or LINK SYNC state machines will take over and restart link attempt.
- 14 | IEEE 802.3ch Task Force April 2019

THANK YOU