

MultiGig Auto-PHY Block Code Considerations

August 23, 2017

1

Brett McClellan, Marvell Semiconductor

IEEE 802.3ch Task Force-Ad Hoc Meeting Aug 23, 2017

Agenda

- Media Independent Interface
- 1000BASE-T1 Block Coding
- MultiGBASE-T Block Coding
- Transcoding
- Conclusion
- Further Steps

2

Gig Media Independent Interface

▶ Gig PHYs defined for GMII – Clause 35

- 1000BASE-X, 1000BASE-T, 1000BASE-T1
- Byte-wide at 125MHz
- TXD<7:0>, TX_EN, TX_ER
- RXD<7:0>, RX_ER, RX_DV, (COL, CRS)
- Host interfaces: SGMII, RGMII

MultiGBASE-T Media Independent Interface

Multi-Gig PHYs defined for XGMII – Clause 46

- 2.5/5/10GBASE-T (Cl. 126, 55), 2.5GBASE-X & 5GBASE-R (802.3cb)
- 4-Bytes at 78.125/156.25/312.5 MHz
- TXD<31:0>, TXC<3:0>
- RXD<31:0>, RXC<3:0>
- Host interfaces:
 - -10G: XFI (10GBASE-R), XAUI (10GBASE-X), RXAUI
 - -5G: 5GBASE-R, USXGMII, rate adaptive from 10G
 - -2.5G: 2.5GBASE-X, USXGMII, rate adaptive from 5G/10G

E L L

1000BASE-T1 Block Coding

80B/81B block code

- http://www.ieee802.org/3/bp/public/mar14/Lo_3bp_02_0314.pdf
- Block code designed for GMII
- Not compatible with XGMII: fault codes & 4-byte alignment not supported
- Header bit
 - -= 0 indicates All Data
 - = 1 indicates pointers and control codes used
 - 1.25% overhead

IEEE 802.3ch Task Force-Ad Hoc Meeting Aug 23, 2017

MultiGBASE-T Block Coding

64B/65B block code

- Used in 2.5/5/10GBASE-T
- Block code designed for XGMII aligned to 4 bytes
- Not compatible with GMII: SOF alignment to lane 0 only
- Header bit
 - -= 0 indicates All Data
 - -=1 indicates block type and control codes used
 - 1.5625% overhead
- Short latency, 8 bytes

IEEE 802.3ch Task Force-Ad Hoc Meeting Aug 23, 2017

64B/65B Block Code

Input Data	data ctrl header	Block F	Payload									
Bit Position:	0	1										64
Data Block Format:					_							
D ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ D ₇	0	Do	D ₁	D ₂	D ₃		D ₄		D ₅		D ₆	D ₇
Control Block Formats:		Block										
C ₀ C ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	1	0x1E	Co	C ₁	C ₂	С	3	C4	C5	i	C ₆	C ₇
C ₀ C ₁ C ₂ C ₃ /O ₄ D ₅ D ₆ D ₇	1	0x2D	Co	C ₁	C ₂	С	3	04	D ₅		D ₆	D ₇
C ₀ C ₁ C ₂ C ₃ /S ₄ D ₅ D ₆ D ₇	1	0x33	C ₀	C ₁	C ₂	C	3		D ₅		D ₆	D ₇
O ₀ D ₁ D ₂ D ₃ /S ₄ D ₅ D ₆ D ₇	1	0x66	D ₁	D ₂	D ₃		O ₀		D ₅		D ₆	D ₇
O ₀ D ₁ D ₂ D ₃ /O ₄ D ₅ D ₆ D ₇	1	0x55	D ₁	D ₂	D ₃		0 ₀	0 ₄	D_5		D ₆	D ₇
S ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ D ₇	1	0x78	D ₁	D ₂	D ₃	D ₃		4	D_5		D ₆	D ₇
O ₀ D ₁ D ₂ D ₃ /C ₄ C ₅ C ₆ C ₇	1	0x4B	D ₁	D ₂	D ₃		O ₀	C ₄	C ₅	;	C ₆	C ₇
T ₀ C ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	1	0x87		C ₁	C ₂	С	3	C ₄	Cg	5	C ₆	C ₇
D ₀ T ₁ C ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	1	0x99	Do		C ₂	С	3	C4	Cę	5	C ₆	C ₇
D ₀ D ₁ T ₂ C ₃ /C ₄ C ₅ C ₆ C ₇	1	0xAA	Do	D ₁		С	3	C ₄	C _t	5	C ₆	C ₇
D ₀ D ₁ D ₂ T ₃ /C ₄ C ₅ C ₆ C ₇	1	0xB4	Do	D ₁	D ₂			C4	, C _t	5	C ₆	C ₇
D ₀ D ₁ D ₂ D ₃ /T ₄ C ₅ C ₆ C ₇	1	0xCC	Do	D ₁	D ₂		D	3	C ₅		C ₆	C ₇
D ₀ D ₁ D ₂ D ₃ /D ₄ T ₅ C ₆ C ₇	1	0xD2	Do	D ₁	D ₂		D	3	D ₄		C ₆	C ₇
D ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ T ₆ C ₇	1	0xE1	Do	D ₁	D ₂		D	3	D ₄		D ₅	C ₇
D ₀ D ₁ D ₂ D ₃ /D ₄ D ₅ D ₆ T ₇	1	0xFF	Do	D ₁	D ₂		D	3	D ₄		D ₅	D ₆

IEEE 802.3ch Task Force–Ad Hoc Meeting Aug 23, 2017

Transcoding

Introduced for 25G/40GBASE-T - 512B/513B

Based on 64B/65B code

Trade increased coding efficiency for longer latency

Frees more bits for forward error correction

512B/513B Transcode

- Aggregate 8 x 65B blocks
- If all blocks are data only, set header bit = 1 and send data bytes
- If any block is a control type
 - -Set header bit = 0
 - -Send control blocks: block type, block position, continuation flag
 - -Send remaining data bytes
- 0.2% overhead
- Long latency 64 bytes

8

Conclusion

- ▶ 80B/81B not suited for MultiGBASE-T1
- ▶ 64B/65B good basis for block coding
- Transcoding may be used for higher efficiency
 - **512B/513B**
 - Smaller block sizes may be used for shorter latency

Further Steps

Consider FEC options

Alignment between block code and FEC frame sizes

Modulation impact on symbol size, FEC and block code

