IEEE P802.3cm D1.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber 1st Task Force review comments

CI 200	SC 200.10.1	P 39
Swanson, Steven	Corning Incorporated	$\# 1$

Cl $200 \quad$ SC 200.7.3	P 32	C 46
Swanson, Steven	Corning Incorporated	\#

Comment Type T Comment Status D

Specifying a minimum value for channel insertion loss provides little value.

SuggestedRemedy

Delete the last row in Table 200-13
Proposed Response Response Status w
PROPOSED REJECT
Some optical PMDs have a non-zero value for the Channel insertion loss (min), so this row makes it clear that for all of the PMDs covered by this table, the minimum is zero.
This row is present (with a value of 0) in Table 86-13, Table 88-14, Table 89-13, Table 95-
12 , Table 112-7, Table 121-13, Table 122-17, Table 123-6, and Table 124-11, so Table 138-14 follows well establised practice
[Editor's note: Clause changed from "200.10.1" to "200" and Subclause changed from "Table 200-13" to "200.10.1"]

Cl 138	SC 138.10.1	P 276
Swanson, Steven	Corning Incorporated	$\# 2$

Comment Type T Comment Status D

Specifying a minimum value for channel insertion loss provides little value.

SuggestedRemedy

Delete the last row in Table 138-14.
Proposed Response Response Status w
PROPOSED REJECT.
Some optical PMDs have a non-zero value for the Channel insertion loss (min), so this row makes it clear that for all of the PMDs covered by this table, the minimum is zero.
This row is present (with a value of 0) in Table 86-13, Table 88-14, Table 89-13, Table 9512 , Table 112-7, Table 121-13, Table 122-17, Table 123-6, and Table 124-11, so Table
138-14 follows well establised practice.
[Editor's note: Clause changed from "138.10.1" to 138 and Subclause changed from "Table 138-14" to "138.10.1"]

Comment Type TR Comment Status D

953nm specifications in Table 200-9 are not applicable.
SuggestedRemedy
Replace row 2 in Table 200-9:
Specify nominal operating wavelength for at 910 nm .
Utilize illustrative EMB values of 1230 for OM3, 1890 for OM4 and 2940 for OM5 at 910 nm .

Proposed Response
Response Status w
PROPOSED ACCEPT IN PRINCIPLE.
910 nm is a reasonable representative wavelength for the second wavelength range. However the specific minimum EMBs proposed do not well coincide with those in IEC 60793-2-10 ed. 7 CDV wherein at 910 nm OM3 = 1260, OM4 = 1980, OM5 = 3100 MHz km rounded to nearest 10 MHz km.

Replace the contents of row 2 in Table 200-9 with the following: Effective modal bandwidth at $910 \mathrm{~nm}(\min)^{\wedge} \mathrm{a}|1260| 1980|3100| \mathrm{MHz} \times \mathrm{km}$ Note: the | character represents a column division and x represents the multiply character (Ctrl-q 0).

In row 1 of Table 200-9, replace the Unit entry with $\mathrm{MHz} \times \mathrm{km}$
[Editor's note: Clause changed from "200.7.3" to "200" and Subclause changed from "Table 200-9" to "200.7.3"]

Cl $\mathbf{2 0 0}$	SC 200.10.1	P 39	L 39
Swanson, Steven	Corning Incorporated	\# 4	

Swanson, Steven Corning Incorporated

Comment Type TR Comment Status D

There is no need to test channel insertion loss for both wavelength ranges.
SuggestedRemedy
Add footnote "c" to Table 200-13 attached to Channel Insertion Loss (max):
A compliant 850nm channel insertion loss demonstrates compliance for the 910 channel.
Proposed Response Response Status W
PROPOSED ACCEPT IN PRINCIPLE.
Add the following sentence to the end of footnote b :
Compliant channel insertion loss at 850 nm also demonstrates compliance at 910 nm .
[Editor's note: Clause changed from "200.10.1" to "200" and Subclause changed from "Table 200-13" to "200.10.1"]

IEEE P802.3cm D1.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber 1st Task Force review comments

Cl $\mathbf{2 0 0}$	SC 200.10.2.1	P 40
Swanson, Steven	Corning Incorporated	$\# 10$

Comment Type TR Comment Status D
 953nm specifications in Table 200-14 are not applicable.

SuggestedRemedy
Replace row 4 in Table 200-14
Specify nominal operating wavelength for at 910 nm .
Utilize illustrative EMB values of 1230 for OM3, 1890 for OM4 and 2940 for OM5 at 910 nm . Proposed Response Response Status w
PROPOSED REJECT.
While it is acceptable to put non-normative information such as minimum EMB at 910 nm into the illustrative link power budget of Table 200-9, such information does not belong in normative Table 200-14. The current specifications are key normative items that define and delineate each fiber cable type including the minimum EMB at 953 nm .
[Editor's note: Clause changed from "200.10.2.1" to "200" and Subclause changed from "Table 200-14" to "200.10.2.1"]

CI FM SC FM	P9	L3	\#
Anslow, Pete	Ciena		

Comment Type E Comment Status D Bucket
"IEEE Std $802.3 \mathrm{~cm}-2018$ " should be "IEEE Std $802.3 \mathrm{~cm}-20 \mathrm{xx}$ "

SuggestedRemedy

Change "2018" to "20xx"
Proposed Response Response Status
PROPOSED ACCEPT.

Cl 1	SC 1.4	P 13	$L 16$
Anslow, Pete	Ciena		7

Anslow, Pete Ciena

Comment Type T Comment Status D
Definitions for:
1.4.110a: 400GBASE-SR4.2
1.4.110b: 400GBASE-SR8
are missing
SuggestedRemedy
Replace the current three lines under 1.4 with:
Insert the following new definitions after 1.4.110 "400GBASE-SR16" as follows:
1.4.110a: 400GBASE-SR4.2: IEEE 802.3 Physical Layer specification for $400 \mathrm{~Gb} / \mathrm{s}$ using 400GBASE-R encoding over eight bidirectional lanes of multimode fiber, with reach up to at least 150 m . (See IEEE Std 802.3, Clause 200.)
1.4.110b: 400GBASE-SR8: IEEE 802.3 Physical Layer specification for $400 \mathrm{~Gb} / \mathrm{s}$ using

400GBASE-R encoding over eight lanes of multimode fiber, with reach up to at least 100 m. (See IEEE Std 802.3, Clause 138.)

Proposed Response Response Status w
PROPOSED ACCEPT IN PRINCIPLE.
Replace the current three lines under 1.4 with:
Insert the following new definitions after 1.4.110 "400GBASE-SR16" as follows:
1.4.110a: 400GBASE-SR4.2: IEEE 802.3 Physical Layer specification for $400 \mathrm{~Gb} / \mathrm{s}$ using 400GBASE-R encoding over eight bidirectional lanes on multimode fiber, with reach up to at least 150 m . (See IEEE Std 802.3, Clause 200.)
1.4.110b: 400GBASE-SR8: IEEE 802.3 Physical Layer specification for $400 \mathrm{~Gb} / \mathrm{s}$ using 400GBASE-R encoding over eight lanes of multimode fiber, with reach up to at least 100 m. (See IEEE Std 802.3, Clause 138.)

Cl 45	SC 45	P15	L1

Anslow, Pete Ciena
Comment Type TR Comment Status D
Bucket
The changes to Clause 45 are missing

SuggestedRemedy

Populate this clause with the required changes.
I would be happy to assist with this if that would be helpful.
Proposed Response Response Status W
PROPOSED ACCEPT IN PRINCIPLE.
Populate Clause 45 with the necessary changes

IEEE P802.3cm D1.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber 1st Task Force review comments

IEEE P802.3cm D1.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber 1st Task Force review comments

IEEE P802.3cm D1.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber 1st Task Force review comments

Cl 200 SC 200.8.5.1	P35	$L 12$
Kolesar, Paul	CommScope	

Cl 200 SC 200	P23	L1
Kolesar, Paul	CommScope	

Comment Type Eomment Status D Bucket

Line thickness inconsistency.
SuggestedRemedy
Reduce thickness of arrow to the right of second "1 UI delay" box to match others.
Proposed Response Response Status w
PROPOSED ACCEPT IN PRINCIPLE.
All of the lower arrows have the same line thickness. However, the arrow in question is not quite horizontal, which may account for an apparent line thickness difference.
See response to comment \# 24

Cl 200 SC 200.8.5.1	P35	L6	\# 23
Kolesar, Paul	CommScope		
Comment Type E	Comment Status D		Bucket

Comment Type E
Comment Status D
Bucket
Line fuzziness. The middle arrow appears fuzzy, likely due to not being perfectly horizontal.

SuggestedRemedy
Improve clarity of arrow.
Proposed Response Response Status w
PROPOSED ACCEPT IN PRINCIPLE.
Change the upper middle horizontal arrow to have zero height.

Cl 200 SC 200.8.5.1	P35 Kolesar, Paul	CommScope

Comment Type E
Comment Status D
Bucket

Line fuzziness. The fourth arrow appears fuzzy, likely due to not being perfectly horizontal.
SuggestedRemedy
Improve clarity of arrow.
Proposed Response Response Status w
PROPOSED ACCEPT IN PRINCIPLE.
Change the third and fourth lower horizontal arrows to be zero height.

Comment Type E Comment Status D
The clause number is likely not correct, as 200 is a placeholder.
SuggestedRemedy
Replace 200 with actual clause number, along with attendant ripple effect throughout clause.
Proposed Response Response Status w PROPOSED ACCEPT IN PRINCIPLE.
Re-number Clause 200 to Clause 150 throughout the draft.

Clause 200 starts on page 23, which is likely incorrect and may cause conflicts with the page number of existng clauses.

SuggestedRemedy
Start page numbering commensurate with corrected clause number that was addressed in another comment.
Proposed Response Response Status w
PROPOSED ACCEPT IN PRINCIPLE.
Change page numbering throughout the draft to be consisten with the PDF page numbering.

Cl 200	SC 200.10.2.1	P40	$L \mathbf{1 4}$	\# 27
Kolesar, Paul	CommScope			

CommScop
Comment Type T Comment Status D
The units of dispersion are missing parentheses around the denominator. Note: this same error was caught in draft IEC fiber specification 60793-2-10 ed.7. The units are also missing the dot multiplication symbol.
SuggestedRemedy
Add parentheses and dot to read $\mathrm{ps} /(\mathrm{nm} 2 \cdot \mathrm{~km})$.
Proposed Response Response Status w
PROPOSED ACCEPT IN PRINCIPLE.
Change the units entry for the bottom row of Table 200-14 from "ps/nm^2 km" to "ps/(nm^2 xkm)" where x represents the multiply character (Ctrl-q 0).

Also, in the two Effective modal bandwidth rows, change "MHz.km" to "MHz x km"

IEEE P802.3cm D1.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber 1st Task Force review comments

Cl 138	SC 138.10.2.1	P 279	L 20	\# 28
Kolesar, Paul		CommScope		

Cl 138 SC 138.10.3.1	P 35		L 1	\# 31	
Dudek, Mike	Marvell				
Comment Type $\quad \mathbf{T}$	Comment Status	D			Bucket
There is only one row.					
SuggestedRemedy					
Delete "in each row" two places.					
Proposed Response	Response Status	w			
PROPOSED ACCEPT.					

The reference to 200.6 in the footnote to Table 200-4 should be a hot link.
SuggestedRemedy Fix it.
Proposed Response Response Status w
PROPOSED ACCEPT IN PRINCIPLE.
Make "200.6" in Footnote a to Table 200-4 a cross-reference.
[Editor's note: Subclause changed from "200." to "200.5.4", Page set to "28", Line set to "40"]

Cl 200	SC 200.6	P 47	L 18
Dudek, Mike	Marvell	\# 33	

Comment Type T Comment Status D
It doesn't read correctly that "this positioning". We haven't previously defined any positioning. Also 200.10.3.1 doesn't give the positioning of transmit and receive lanes. (All used fibers have both transmit and receive lanes).
SuggestedRemedy
Change "This positioning of transmit and receive lanes at the MDI" to "The positioning of the TxRX pair types at the MDI"
Proposed Response Response Status W
PROPOSED ACCEPT IN PRINCIPLE.
Change:
This positioning of transmit and receive lanes at the MDI ..." to:
"The positioning of the TxRx pair types at the MDI ..."

IEEE P802.3cm D1.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber 1st Task Force review comments

Cl 200	SC 200.7.1	P 48	L 10
Dudek, Mike	Marvell		\# 34

Comment Type T

Comment Status D
Is there an intentional difference between this spec and other multimode specs that this is just called "wavelength" rather than "center wavelength". If so where is the definition of "wavelength"

SuggestedRemedy

Change "wavelength (range)" to "Center wavelength (range)". Also in table 200-8.
Proposed Response
Response Status
PROPOSED ACCEPT.

Cl 200	SC 200.9.2	P54	L53
Dudek, Mike	Marvell		\# 35

Dudek, Mike

Comment Type E
Comment Status D
There is a footnote symbol but the footnote is on a different page
SuggestedRemedy
Move the footnote to be on the same page as it's reference.
Proposed Response Response Status w
PROPOSED ACCEPT.

Cl 200	SC 200.10.3.1	P58	L 1	\# 36

Comment Type T Comment Status D
It would be better to use consistent terminology. In section they are called TR and RT but here on page 58 line 1 they are called TR and RT optical lanes

SuggestedRemedy
Change "optical lanes" to "TxRx pair types"
Proposed Response Response Status w
PROPOSED ACCEPT IN PRINCIPLE.
In the first sentence of 200.10.3.1 change:
"The eight transmit and eight receive optical lanes of 400GBASE-SR4.2 ..." to:
"The four type TR and four type RT TxRx pairs of 400GBASE-SR4.2 ..."
Change the fourth sentence of 200.10.3.1 from:
"The TR optical lanes occupy the leftmost four positions." to:
The TR TxRx pair types occupy the leftmost four positions."
Change the fifth sentence of 200.10.3.1 from:
"The RT optical lanes occupy the rightmost four positions." to:
"The RT TxRx pair types occupy the rightmost four positions."

IEEE P802.3cm D1.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber 1st Task Force review comments

Cl $\mathbf{0 0}$ SC 0	P64	L	$\# 38$
Dudek, Mike	Marvell		

Comment Type Eomment Status D Bucket
Pages 64 and 65 have a table of contents that should not be here. It is also missing some clauses.

SuggestedRemedy

These should be moved to immediately after the front matter and completed.
Proposed Response Response Status w
PROPOSED ACCEPT IN PRINCIPLE
Move the table of contents to be between the front matter and Clause 1 and update it to match the draft contents.

CI $\mathbf{1 3 8}$	SC 138.8.5	P 274	L 27
Dawe, Piers	Mellanox		\# 39

Comment Type TR Comment Status D
The effect of modal noise and mode partition noise, on top of the already overly high 4.5 dB TDECQ, has been under-estimated. The 0.1 dB allocation in the budget might be adequate for MPN alone; if so we need to account for modal noise. The relation between measured TDECQ and penalties in service should be improved. See
dawe_3cm_adhoc_01_101118

SuggestedRemedy

Insert:
Equation (138-1) is used in place of Equation (121-11).
R=sqrt(sigmaG^2 + sigmaS^2- M^2) (138-1)
where $\mathrm{M}=0.0065$ Pave
[Note to reader: Pave is already defined in 121.8.5.3]
In 138.8.10 Stressed receiver sensitivity, either refer to the new Eq. 138-1 (as above) and say that:
the values of M in Equation (138-1) is set to zero
or, leave this section referring to Eq. 121-11 but to avoid confusion, add:
NOTE--The parameter M of Equation (138-1) is not used.
Proposed Response

Response Status w

PROPOSED REJECT.
Changing the TDECQ definition for 50GBASE-SR, 100GBASE-SR2, and 200GBASE-SR4 is out of scope for this project and it is highly desireable to keep the per lane specifications for 400GBASE-SR8 as close as possible to the other PMDs.
In addition, previous analysis has shown that the penalty for modal noise is significantly less than 0.1 dB for NRZ. Insufficient evidence has been provided to show that the penalty is large enough to warrant a change to the link budget. See the following for previous analysis: http://www.ieee802.org/3/aq/public/nov04/pepeljugoski_1_1104.pdf. Experimental data showing that the penatly is large enough to warrant a change would be helpful to support any proposed change.

Cl 200	SC 200.8.5.1	P 35 Dawe, Piers	Mellanox

Comment Type TR Comment Status D
All the PAM4 specs should allow the same range of over- or under-emphasis so that a common equalizer IC can be used for all without the SMF equalizers carrying a burden because of the MMF spec, or all the 850 nm MMF receivers carrying a burden because of the bidi spec. 802.3cd chose a largest magnitude tap coefficient of at least 0.8 as a way of protecting the receiver from excessively peaky signals that abuse the receiver's dynamic range, resolution or sensitivity but don't benefit the transmitter implementer. While SMF TDECQ is measured for both extremes of channel, MMF TDECQ is measured for the slow channel only. We can read across to the other case we don't measure, but recognise that a signal after a slow channel will look less emphasised than what the receiver has to tolerate after a fast channel. The reference equalizer's largest magnitude tap coefficien (0.8 for a fast channel) should be set consistently (as from the same transmitter) for the slow channel. The survey results for MMF (green points, slide 8, dawe 3cd 01b 0518) are all to the right of +0.5 dB (or tap strength about 1.1); with the slower filter for 400GBASESR4.2 they will be further to the right. So we could tighten up more than this proposal, but this is consistent with the SMF specs and still allows a strongly over-emphasised transmitter.

SuggestedRemedy

In "the largest magnitude tap coefficient, which is constrained to be at least 0.8 ", change 0.8 to 0.93 .

Proposed Response

Response Status

PROPOSED REJECT.
VCSEL measurements to date have shown slightly higher TDECQ penalties than SMF transmitters due to low bandwidth, and the use of peaking can help to improve yield and reduce cost especially at process, temperature, and voltage corners. Increasing the minimum coefficient of the largest magnitude tap would reduce the flexibility for the transmitter design.

IEEE P802.3cm D1.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber 1st Task Force review comments

Cl 138	SC 138.8.5.1	P274 Dawe, Piers	Mellanox

Comment Type TR Comment Status D

All the PAM4 specs should allow the same range of over- or under-emphasis so that a common equalizer IC can be used for all without the SMF equalizers carrying a burden because of the MMF spec. 802.3cd chose a largest magnitude tap coefficient of at least 0.8 as a way of protecting the receiver from excessively peaky signals that abuse the receiver's dynamic range, resolution or sensitivity but don't benefit the transmitter implementer. While SMF TDECQ is measured for both extremes of channel, MMF TDECQ is measured for the slow channel only. We can read across to the other case we don't measure, but recognise that a signal after a slow channel will look less emphasised than what the receiver has to tolerate after a fast channel. The reference equalizer's largest magnitude tap coefficient (0.8 for a fast channel) should be set consistently (as from the same transmitter) for the slow channel. The survey results for MMF (green points, slide 8 dawe_3cd_01b_0518) are all to the right of +0.5 dB (or tap strength about 1.1). So we could tighten up more than this proposal, but this is consistent with the SMF specs and still allows a strongly over-emphasised transmitter

SuggestedRemedy

In "the largest magnitude tap coefficient, which is constrained to be at least 0.8 ", change 0.8 to 0.85 .

Proposed Response
Response Status
PROPOSED REJECT.
Changing the constraint on the largest magnitude tap coefficient for 50GBASE-SR,
100GBASE-SR2, and 200GBASE-SR4 is out of scope for this project and it is highly desireable to keep the per lane specifications for 400GBASE-SR8 as close as possible to the other PMDs
In addition, VCSEL measurements to date have shown slightly higher TDECQ penalties than SMF transmitters due to low bandwidth, and the use of peaking can help to improve yield and reduce cost especially at process, temperature, and voltage corners. Increasing the minimum coefficient of the largest magnitude tap would reduce the flexibility for the transmitter design.

Cl $\mathbf{1 3 8}$	SC 138.8.5.1	P 274 Mellanox	$L \mathbf{3 9}$

Comment Type TR Comment Status D
Equalizing a signal after an 11.2 GHz BT4 filter with a 5-tap FFE needs at least one precursor unless the signal is carefully pre-distorted. If it is, and a fourth post-cursor is needed, the same transmitter seen after a fast channel, e.g. a short fibre, will be difficult to receive because the 5-tap FFE can't correct the fourth post-cursor and the (now -ve) first precursor at the same time. As we don't have tap weight limits except for the cursor, this could be as bad as trying to receive a neutral signal after an 11.2 GHz filter with no precursor.
Note there is a separate comment that explains why allowing a second precursor is undesirable. Accepting both comments ("Tap 2 has") has an additional benefit of simplifying and speeding up TDECQ measurement.

SuggestedRemedy

To ensure that the transmitter is good enough without having to rely on a particular channel bandwidth and a fourth post-cursor, change "Tap 1, tap 2, or tap 3, has" to "Tap 2 or tap 3 has".
Proposed Response
Response Status
PROPOSED REJECT.
Changing the constraint on which tap can have the largest magnitude for 50GBASE-SR, 100GBASE-SR2, and 200GBASE-SR4 is out of scope for this project and it is highly desireable to keep the per lane specifications for 400GBASE-SR8 as close as possible to the other PMDs.
In addition, limiting to at most three post-cursors in the reference EQ means that the transmitted signal, when propagated through a worst case channel, cannot have a significant amount of post-cursor response at the receiver without suffering higher TDECQ penalty. The chromatic and modal dispersion effects of the optical channel, in combination with laser performance, may result in a reference EQ solution with four postcursor taps being the optimal response for the channel.

IEEE P802.3cm D1.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber 1st Task Force review comments

Cl 200	$S C 200.7 .1$	P31 Dawe, Piers
	Mellanox	L29

, Mellanox

The transition time spec is intended to protect the receiver from unreasonably slow signals, and it should be possible to use a common equalizer IC across all 50G/lane PAM4 optical PMDs without having to carry a burden for just one or a few PMD types. 802.3cd chose 34 ps as the slowest after a slow channel (SMF clauses) but also used 34 ps for the slowest MMF signal after a fast channel, equivalent to 36 ps after a slow channel - but still used 34 ps for the slowest signal in SRS. This is inconsistent. The channel for 400GBASE-SR4.2 can be even slower, so the error is larger. The survey results for show that actual transition times are significantly faster than these numbers, and transmitters for 150 m have to be better than those for 100 m , so there is room to correct the spec and still allow plenty of margin for measurement.
SuggestedRemedy
Change 34 ps to 30 ps.
In 200.8.10 Stressed receiver sensitivity, change "the transition time is no greater than the value specified in Table 200-7" to "the transition time is no greater than 34 ps ", or add a limit could of 34 ps to Table 200-8, Receive characteristics, in the section for Conditions of stressed receiver sensitivity test.
Proposed Response
Response Status
W
PROPOSED REJECT.
VCSEL measurements shown in
http://www.ieeee802.org/3/cd/public/May18/king_3cd_03_0518.pdf and
http://www.ieee802.org/3/cd/public/May18/king_3cd_03_0518.pdf and high as 33 ps , with no receiver problems seen.
The definitive measurement of the stress of the SRS test source is it's SECQ, individual components of the stress cannot all be at their maximum values and still meet the SECQ values.

Cl 138	SC 138.7.1	P 272 Mawe, Piers	Mellanox

Comment Type
The transition time spec is intended to protect the receiver from unreasonably slow signals, and it should be possible to use a common equalizer IC across all 50G/lane PAM4 optical PMDs without having to carry a burden for just one or a few PMD types. 802.3cd chose 34 ps as the slowest after a slow channel (SMF clauses) but also used 34 ps for the slowest MMF signal after a fast channel, equivalent to 36 ps after a slow channel - but still used 34 ps for the slowest signal in SRS. This is inconsistent. The survey results show that actual transition times are significantly faster than these numbers, so there is room to correct the spec and still allow plenty of margin for measurement.
SuggestedRemedy
Change 34 ps to 32 ps.
In 138.8.10 Stressed receiver sensitivity, change "the transition time is no greater than the value specified in Table 138-8" to "the transition time is no greater than 34 ps ", or add a limit could of 34 ps to Table 138-9, Receive characteristics, in the section for Conditions of stressed receiver sensitivity test.
Proposed Response Response Status
PROPOSED REJECT.
Changing the transition time for 50GBASE-SR, 100GBASE-SR2, and 200GBASE-SR4 is out of scope for this project and it is highly desireable to keep the per lane specifications for 400GBASE-SR8 as close as possible to the other PMDs.

IEEE P802.3cm D1.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber 1st Task Force review comments

Cl 200	SC 200.8.5	P 34 Dawe, Piers
	Mellanox	L46

Comment Type TR Comment Status D
The effect of modal noise and mode partition noise, on top of the already overly high 4.5 dB TDECQ, has been under-estimated. The 0.1 dB allocation in the budget apears inadequate for MPN alone, and we need to account for modal noise also. The relation between measured TDECQ and penalties in service should be improved. See dawe_3cm_adhoc_01_101118
This remedy keeps the 150 m reach for OM5, but the 100 m links are paying a penalty, now 0.2 dB , for support of 150 m
SuggestedRemedy
Insert:
Equation (138-1) is used in place of Equation (121-11).
$\mathrm{R}=$ sqrt(sigmaG^2 $+\operatorname{sigmaS}^{\wedge} 2-\mathrm{M}^{\wedge} 2$) (138-1)
where $M=0.0065$ Pave
[Note to reader: Pave is already defined in 121.8.5.3]
In 138.8.10 Stressed receiver sensitivity, either refer to the new Eq. 138-1 (as above) and say that:
the values of M in Equation (138-1) is set to zero
or, leave this section referring to Eq. 121-11 but to avoid confusion, add:
NOTE--The parameter M of Equation (138-1) is not used.
Reduce the limits for TDECQ and TDECQ-10log10(Ceq), from 4.5 dB to $4.3 \mathrm{~dB}(0.2 \mathrm{~dB}$ Reduce the limits for TDECQ and TDECQ-10log10(Ceq), from 4.5 dB to $4.3 \mathrm{~dB}(0.2 \mathrm{~dB}$
lower than the SECQ values, allowing for 0.3 dB MPN penalty with associated Pcross, including the 0.1 dB already in the draft budget)
In the budget table 200-9, the power budget and allocation for penalties don't change, but the additional insertion losses for 70 m and 100 m increase by 0.1 dB each.
Proposed Response
Response Status W
PROPOSED REJECT.
Previous analysis has shown that the penalty for modal noise is significantly less than 0.1 dB for NRZ. Insufficient evidence has been provided to show that the penalty is large enough to warrant a change to the link budget. See the following for previous analysis: http://www.ieee802.org/3/aq/public/nov04/pepeljugoski_1_1104.pdf. Experimental data showing that the penatly is large enough to warrant a change would be helpful to support any proposed change.

Cl 138	SC 138.1	P 265	L 20	\# 46
Dawe, Piers		Mellanox		

Comment Type E Comment Status D

"a complete Physical Layer ... as shown in Table 138-1, Table 138-2, Table 138-3, or Table 138-3a": too many tables showing almost the same information makes it hard for the reader to see what is common and what is different.

SuggestedRemedy

Combine to one table with columns for clause number, sublayer, and each PHY type.
Proposed Response
Response Status w
PROPOSED REJECT.
Clause 138 in P802.3cd D3.5 has Table 138-1, Table 138-2, and Table 138-3. The addition of Table-138-3a follows the existing style of Clause 138

Cl 200	$S C 200.8 .5 .1$	P 35	L 2
Dawe, Piers	Mellanox		\# 47

Dawe, Piers
Mellanox
Comment Type TR Comment Status D
The receiver is assessed with a stressed eye generator that "should have wide and smooth frequency response, and linear phase response". So it won't need unusually strong precursors. A real transmitter, being more "causal" than neutral unless pre-distorted, will need weaker precursors than the SRS signal. Yet a transmitter is allowed to use predistortion to need stronger precursors, maybe of the opposite sign, than the SRS signal, and we should ensure that the transmitter combined with the range of channels can't be significantly worse than the SRS signal. For some low power equalizer architectures, precursors are much more expensive than post-cursors (sun_3cd_042518_adhoc), yet we expect MMF to be low power
A straightforward transmitter probably won't need a second precursor. A clever transmitter can be set up to avoid a second precursor.
Note there is a separate comment that explains why at least one precursor is needed. Accepting both comments ("Tap 2 has") has an additional benefit of simplifying and speeding up TDECQ measurement

SuggestedRemedy

Change "Tap 1, tap 2, or tap 3, has" to "Tap 1 or tap 2 has" (requiring the transmitter be set up to work without relying on a second precursor "special case" weight). Do the same in 138.8.5.1 if warranted.
Proposed Response Response Status w
PROPOSED REJECT.
Allowing just one pre-cursor in the reference EQ means the transmitted signal, when propagated through a worst case channel, cannot have a significant amount of pre-cursor response at the receiver without suffering higher TDECQ penalty. An electrical channel typically can guarantee that, however the chromatic and modal dispersion effects of the optical channel in combination with laser performance may require the extra tap.

IEEE P802.3cm D1.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber 1st Task Force review comments

Cl 200	SC 200.8.5.1	P35	L 2
Dawe, Piers	Mellanox		\# 48

Comment Type TR Comment Status D
Equalizing a signal after an 9 GHz BT4 filter with a 5-tap FFE needs at least one precursor unless the signal is carefully pre-distorted. If it is, and a fourth post-cursor is needed, the same transmitter seen after a fast channel, e.g. a short fibre, will be difficult to receive because the 5-tap FFE can't correct the fourth post-cursor and the (now -ve) first precursor at the same time. As we don't have tap weight limits except for the cursor, this could be as bad as trying to receive a neutral signal after an 9 GHz filter with no precursor.
Note there is a separate comment that explains why allowing a second precursor is undesirable. Accepting both comments ("Tap 2 has") has an additional benefit of simplifying and speeding up TDECQ measurement.
SuggestedRemedy
To ensure that the transmitter is good enough without having to rely on a particular channel bandwidth and a fourth post-cursor, change "Tap 1, tap 2, or tap 3, has" to "Tap 2 or tap 3 has".
Proposed Response Response Status w
PROPOSED REJECT.
Limiting to at most three post-cursors in the reference EQ means that the transmitted signal, when propagated through a worst case channel, cannot have a significant amount of post-cursor response at the receiver without suffering higher TDECQ penalty. The chromatic and modal dispersion effects of the optical channel, in combination with laser performance, may result in a reference EQ solution with four postcursor taps being the optimal response for the channel.

Cl 200	SC 200.8.5	P 34	L 44
Dawe, Piers	Mellanox		\# 49

Comment Type T Comment Status D

While "approximately 13.28125 GHz seems tight enough, "approximately 9 GHz seems very loose. Later the draft says "Compensation may be made for any deviation from an ideal fourth-order Bessel-Thomson response", but it's not clear if one is invited to compensate for inaccurate bandwidth as well as inaccurate filter shape.

SuggestedRemedy

Delete "approximately" or change "an ideal fourth-order Bessel-Thomson response" to "the ideal fourth-order Bessel-Thomson response".
Same for 138.8.5.
Proposed Response Response Status w
PROPOSED REJECT.
This is an identical form of words as used in the various clauses of P802.3cd D3.5 after several iterations due to comments. Changing the wording as per the suggested remedy would not be an improvement to the draft.

Cl 200	SC 200.7.3	P 32
Abbott, John	Corning Incorporated	\# 54

Abbott, John Corning Incorporated
Comment Type T Comment Status D
Not sure this comment was entered...please delete if duplicate
Page 32 line 44(table)
In Table 200-9 (Illustrative Power Budget) the power budget needs to be done at both 850 nm and 910 nm (or 918 nm) because the budget depends on wavelength. There needs to a row with the 910 nm (or 918nm) EMB using IEC guidance. There probably needs to be another row giving the wavelength where the power budget is being calculated [which
wavelength is the constraint] (so that we just use one table rather than have Table 200-
$9 \mathrm{a}(850 \mathrm{~nm})$ and Table $200-9 \mathrm{~b}(918 \mathrm{~nm})$.

SuggestedRemedy

1. include row with the "power penalty wavelength" (probably 918nm)
2. Include row with IEC EMB estimates at "power penalty wavelength"

3

Proposed Response
Response Status w
PROPOSED REJECT.
Multiple wavelengths are used in several single-mode clauses, such as Clause 122, yet only one wavelength is used to illustrate the power budget. The 850 nm wavelength chosen here corresponds to that which will be used to measure the attenuation of the channel.

Cl 200 SC 200.7.3	P 32	
Abbott, John	Corning Incorporated	\# 51

Comment Type T Comment Status D
May be duplicate
In Table 200-9 (Illustrative Power Budget) when the power budget is being calculated for OM3 or OM4, the most accurate chromatic dispersion formula to use is the OM5 one which was developed during OM5 development using a round-robin of OM3 and OM4 fibers from fiber manufacturers. This results in a lower chromatic dispersion penalty for OM3 and
OM4, and this is the more accurate way to calculate the illustrative power budget.
SuggestedRemedy

1. redo with OM5 chromatic dispersion estimate, report.
2. This might also apply to SR8 at 850 nm .

Proposed Response
Response Status W
PROPOSED REJECT.
The decision to change the chromatic dispersion specifications for OM3 and OM4 is the purview of the fiber specification committees of TIA TR-42 and IEC 86A.

$C l 200$	$S C$	200.8 .4	$P 34$	$L 44$

Comment Type T Comment Status D
This may be duplicate comment
Page 34 line 44-3dB bandwidth of approximately 9 GHz should be recalculated following Jonathan Ingham procedure in ingham 3cm 02 0918.pdf for OM3 and OM4, using the OM5 chromatic dispersion formulation, which is the more accurate formula. If the resulting bandwidth is 9.1 or higher for OM3 and OM4, use 9.1 GHz , if 9.2 GHz or higher for OM3 and OM4, use 9.2 GHz , etc. This will reduce the required FEC

SuggestedRemedy

1. redo calculation of this key BW with the OM5 chromatic dispersion formula used for

OM3 and OM4. This will be a more accurate estimate of the BW
2. used the BW for 100 m OM4 - this should be a little higher than 9 GHz (i.e. 9.1 GHz)

Proposed Response
Response Status W
PROPOSED REJECT.
The filter choice is selected as the lowest among the three fiber bandwidth grades at their stated reaches in order to provide a single test condition that covers all three. A differen filter bandwidth will not affect the choice of FEC as that choice is made to harmonize with existing FEC chioce made in P802.3bs and P802.3cd.

