IEEE P802.3cm D2.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber Initial Working Group ballot comments

SuggestedRemedy
Change the editing instruction to:
"Change the first paragraph of 138.1, and change Table 138-3, as follows:" Remove the second paragraph of 138.1 from the draft
Response Response Status C
ACCEPT.

CI 138	SC 138.8.5	P38	L38	\#

Dawe, Piers Mellanox

Comment Type TR Comment Status R

The 0.1 dB allocation for both modal noise and mode partition noise is too little. See
dawe_3cm_adhoc_01_101118, castro_3cm_01_1118, pepeljugoski_1_1104 and

0.45 dB) as well as 0.1 dB for MPN. The total penalties should be kept below 4.6 dB ,
which is unreasonably high already. This should be done with a formula, as for 100GBASE-
SR4, so as not to penalise good transmitters.
In the remedy, $M=0.0065^{*}$ Pave may be on the low side: $100 \mathrm{GBASE}-\mathrm{SR} 4$ has $\mathrm{M} 2=$ 0.0175^{*} Pave.

SuggestedRemedy

Add an exception in 138.8 .5 as follows:
For 400GBASE-SR8, Equation (138-1) is used in place of Equation (121-11).
R=sqrt(sigmaG^2 + sigmaS^2 - $\mathrm{M}^{\wedge} 2$) (138-1)
where $\mathrm{M}=0.0065$ Pave
In 138.8.10 Stressed receiver sensitivity, refer to the new Eq. 138-1 (as above) and say that:
the values of M in Equation (138-1) is set to zero
(or, leave this section referring to Eq. 121-11 but to avoid confusion, add
NOTE--The parameter M of Equation (138-1) is not used.)

Response
 Response Status U

REJECT.
This comment is similar to comments \#39 against D1.0, \#4 against D1.1 and \#1 against
D1.2, which were rejected
It is highly desirable to keep the per lane specifications for 400GBASE-SR8 identical to the ther PMDs in Clause 138 and changing the TDECQ definition for 50GBASE-SR,
100GBASE-SR2, and 200GBASE-SR4 is out of scope for this project.

Cl 150	$S C$	150.8.5.1	P58	L29

Dawe, Piers Mellanox

Comment Type TR Comment Status A

All the PAM4 specs should allow the same range of over-emphasis so that a common equalizer IC can be used for all, without all their equalizers carrying a burden because of the bidi spec. 802.3 cd chose a largest magnitude tap coefficient of at least 0.8 as a way of protecting the receiver from excessively peaky signals that abuse the receiver's dynamic range or resolution but don't benefit the transmitter implementer.
While SMF TDECQ is measured for both extremes of channel, MMF TDECQ is measured for the slow channel only. We could measure MMF TDECQ for the fast channel too. If not we can read across, recognising that a signal after the slow measurement channel looks ess emphasised than what the receiver has to tolerate after a fast channel
The reference equalizer's largest magnitude tap coefficient (0.8 for a fast channel) should be set consistently (as from the same transmitter) for the slow channel. The survey results for MMF (green points, slide 8, dawe 3cd 01b 0518) are all to the right of +0.5 dB (or tap strength about 1.1); with the slower filter for 400GBASE-SR4.2 they will be further to the right (bigger again). Anyone using emphasis to make a slow transmitter look faster will start well to the right (large tap strength) and will not be concerned by this limit. This proposal is consistent with the SMF specs and still allows a strongly over-emphasised transmitter.

SuggestedRemedy
In "the largest magnitude tap coefficient, which is constrained to be at least 0.8 ", change 0.8 to 0.9 .

Response
 Response Status C

ACCEPT IN PRINCIPLE
In "the largest magnitude tap coefficient, which is constrained to be at least 0.8 ", change 0.8 to 0.85 . This will restrict transmitters to have no more emphasis than 50GBASE-SR, 100GBASE-SR2, 200GBASE-SR4 and 400GBASE-SR8.

Straw poll:

Do you agree with the change to 0.85 ?
Y: 10
$\mathrm{N}: 1$

CI 138	SC 138.8.5.1	P38	L45
Dawe, Piers		Mellanox	\# 8
Comment			

CI 138	SC 138.8.5.1	P38	L45
Dawe, Piers	Mellanox		\# 9

Comment Type TR Comment Status \mathbf{R}
All the PAM4 specs should allow the same range of over-emphasis so that a common equalizer IC can be used for all, without all SMF equalizers carrying a burden because of the MMF spec. 802.3 cd chose a largest magnitude tap coefficient of at least 0.8 as a way of protecting the receiver from excessively peaky signals that abuse the receiver's dynamic range or resolution but don't benefit the transmitter implementer - however they did not implement it fully.
While SMF TDECQ is measured for both extremes of channel, MMF TDECQ is measured for the slow channel only. We could measure MMF TDECQ for the fast channel too. If not, we can read across to the other case we don't measure, recognising that a signal after the slow measurement channel looks less emphasised than what the receiver has to tolerate after a fast channel.
The reference equalizer's largest magnitude tap coefficient (0.8 for a fast channel) should be set consistently (as from the same transmitter) for the slow channel. The survey results for MMF (green points, slide 8, dawe_3cd_01b_0518) are all to the right of +0.5 dB (or tap strength about 1.1). Anyone using emphasis to make a slow transmitter look faster will start well to the right (large tap strength) and will not be concerned by this limit. This proposal is consistent with the SMF specs and still allows a strongly over-emphasised transmitter.

SuggestedRemedy

Change the fourth sentence in 138.8.5.1 as follows: change "Tap 1, tap 2 , or tap 3 , has the Change the fourth sentence in 138.8 .5 .1 as follows: change "Tap 1, tap 2, or
largest magnitude tap coefficient, which is constrained to be at least 0.8 ." to
"...constrained to be at least 0.8 for 50GBASE-SR, 100GBASE-SR2, and 200GBASE-SR4, and at least 0.85 for 400GBASE-SR8".
Note another comment relates to the same sentence
Response Response Status C
REJECT.
This comment is similar to comments \#41 against D1.0, \#6 against D1.1 and \#3 against D1.2, which were rejected.
It is highly desirable to keep the per lane specifications for 400GBASE-SR8 identical to the other PMDs and changing the constraint on the largest magnitude tap coefficient for 50GBASE-SR, 100GBASE-SR2, and 200GBASE-SR4 is out of scope for this project. In addition, VCSEL measurements to date have shown slightly higher TDECQ penalties than SMF transmitters due to low bandwidth, and the use of peaking can help to improve yield and reduce cost especially at process, temperature, and voltage corners. Increasing the minimum coefficient of the largest magnitude tap would reduce the flexibility for the transmitter design.

Dawe, Piers Mellanox

Comment Type TR Comment Status R
Equalizing a signal after an 11.2 GHz BT4 filter with a 5-tap FFE needs at least one precursor unless the signal is carefully pre-distorted. If it is, and a fourth post-cursor is needed, the same transmitter seen after a fast channel, e.g. a short fibre, can be difficult to receive (outside the TDECQ spec limit) because the 5-tap FFE can't correct the fourth postcursor and the (now -ve) first precursor at the same time.
The fast channel can have less mode partition noise but more modal noise, but the problem remains.
In practice, it seems that TDECQ uses at least one precursor for real MMF transmitters. Possible remedies include:
Ensure there is at least one precursor (tap 2 or 3 is the largest), or
Modify TDECQ if tap 1 is the largest by adding an interferer representing the uncorrected precursor that this weird transmitter would have on a short link, or
Defining MMF TDECQ with fast and slow channels, in the same spirit as SMF with high and low dispersion, noting that if tap 2 or 3 is the largest it can be assumed that
TDECQ(fast) < TDECQ(slow), so no need to determine it. It should be possible to make a reasonable estimate of TDECQ(fast) from the dataset of a TDECQ(slow) measurement,
but it's not likely that one would need to do that, as noted above.
SuggestedRemedy
To ensure that the 400GBASE-SR8 transmitter is not gaming the spec like this:
Change the fourth sentence in 138.8.5.1 as follows: change "Tap 1, tap 2, or tap 3, has the largest magnitude tap coefficient..." to
"For 50GBASE-SR, 100GBASE-SR2, and 200GBASE-SR4, tap 1, tap 2, or tap 3, has the largest magnitude tap coefficient... For 400GBASE-SR8, tap 2 or tap 3, has the largest magnitude tap coefficient..."
Note another comment relates to the same sentence.
Response
Response Status U
REJECT.
This comment is similar to comments \#42 against D1.0, \#7 against D1.1 and \#4 against
D1.2, which were rejected.
It is highly desirable to keep the per lane specifications for 400GBASE-SR8 identical to the other PMDs and changing the constraint on which tap can have the largest magnitude for 50GBASE-SR, 100GBASE-SR2, and 200GBASE-SR4 is out of scope for this project.
Limiting to at most three post-cursors in the reference equalizer means that the transmitted signal, when propagated through the TDECQ reference response, cannot have a significant amount of fourth post-cursor response at the receiver without suffering higher TDECQ penalty.
Insufficient evidence has been provided to justify a change.

$C / 150$	$S C$	150.7 .1	$P 54$	$L 30$
Dawe, Piers	Mellanox		\# 10	

Dawe, Piers Mellanox
Comment Type TR

Comment Status A
The transition time spec is not consistent for transmit and SRS specs, and too slow for this 400GBASE-SR4.2 channel which needs faster transmitters. See slides 6 and 7 of dawe_3cm_01a_0119.

The transition time spec is intended to protect the receiver from unreasonably slow signals, and it should be possible to use a common equalizer IC across all 50G/lane PAM4 optical PMDs without having to carry an extra burden for the bidi spec.
802.3 cd chose 34 ps as the slowest after a slow channel (SMF clauses). Here, we have 34 ps for the slowest MMF signal after a fast channel, equivalent to 38 ps (observed in
13.28125 GHz) after a slow channel - but 34 ps is used for the slowest signal in SRS. This is inconsistent. The survey results for MMF (dawe_3cd_01b_0518 slide 8 green and slide 11 brown) show that actual transition times are significantly faster than these numbers, and transmitters for 150 m have to be better than those for 100 m , so there is room to correct this spec and still allow plenty of margin for measurement.
Also, it is more convenient to use the same bandwidth for transition time as for TDECQ. If someone prefers to use a different bandwidth, he can read the results across, similar to the second alternative in the remedy
Someone using emphasis to make a slow transmitter look faster will find that it makes the transition time shorter too. If his transmitter is slow enough to worry about the transition time spec, he won't have a problem with tightening the cursor tap strength limit, and it will fail TDECQ anyway because it's too slow.

SuggestedRemedy

Either: in 150.8.7, Transmitter transition time, change 13.28125 GHz to 9 GHz and 26.5625 GHz to 18 GHz (twice) (same as 150.8.5, TDECQ).
Or:
Change 34 ps to 30 ps , and:
In 150.8.10 Stressed receiver sensitivity, change "the transition time is no greater than the value specified in Table 150-7" to "the transition time is no greater than 34 ps ", or add a limit could of 34 ps to Table 150-8, Receive characteristics, in the section for Conditions of stressed receiver sensitivity test.

Response

Response Status C
ACCEPT IN PRINCIPLE.
In Table 150-7, change 34 ps to 31 ps.

Cl 138	$S C$	138.7.1	P36	$L 53$

Dawe, Piers Mellanox

Comment Type TR Comment Status R
The transition time spec is not consistent for transmit and SRS specs. See slides 6 and 7 of dawe_3cm_01a_0119.

The transition time spec is intended to protect the receiver from unreasonably slow signals, and it should be possible to use a common equalizer IC across all 50G/lane PAM4 optical PMDs without having to carry an extra burden for just one or a few PMD types.
802.3 cd chose 34 ps as the slowest after a slow channel (SMF clauses) but also used 34 ps for the slowest MMF signal after a fast channel, equivalent to 36 ps (observed in
13.28125 GHz) after a slow channel - but still used 34 ps for the slowest signal in SRS.

This is inconsistent. The survey results for MMF (dawe_3cd_01b_0518 slide 8 green and slide 11 brown) show that actual transition times are significantly faster than these numbers, so there is room to correct the spec and still allow plenty of margin for measurement.
Also, it is more convenient to use the same bandwidth for transition time as for TDECQ. If someone prefers to use a different bandwidth, he can read the results across, similar to the second alternative in the remedy
Someone using emphasis to make a slow transmitter look faster will find that it makes the transition time shorter too. If his transmitter is slow enough to worry about the transition time spec, he won't have a problem with tightening the cursor tap strength limit.
SuggestedRemedy
Either: in 138.8.7, Transmitter transition time, for 400GBASE-SR8, change 13.28125 GHz to 11.2 GHz and 26.5625 GHz to 22.4 GHz (twice) (same as 138.8 .5 , TDECQ). Or:
In Table 138-8, Transmit characteristics, add a second Transmitter transition time row for 400GBASE-SR8, max 32 ps (not 34), and:
In 138.8.10 Stressed receiver sensitivity, change "the transition time is no greater than the value specified in Table 138-8" to "the transition time is no greater than 34 ps ", or add a limit of 34 ps for 400GBASE-SR8 to Table 138-9, Receive characteristics, in the section for Conditions of stressed receiver sensitivity test.

Response

Response Status C
REJECT.
This comment is similar to comments \#44 against D1.0, \#9 against D1.1 and \#6 against
D1.2, which were rejected.
D1.2, which were rejected.
It is highly desirable to keep the per lane specifications for 400GBASE-SR8 identical to the It is highly desirable to keep the per lane specifications for 400GBASE-SR8 identical to the
other PMDs in Clause 138 and changing the transition time for 50GBASE-SR, 100GBASESR2, and 200GBASE-SR4 is out of scope for this project.

$C l$				
150	$S C$	150.8 .5	$P 58$	$L 18$

Dawe, Piers Mellanox

CI FM SC FM	P16	L44	\# 13	
Dawe, Piers		Mellanox		Bucket
Comment Type E	Comment Status A			

The 0.1 dB allocation for both modal noise and mode partition noise is too little. See dawe 3 cm adhoc 01 101118, castro 3 cm 01 1118, pepeljugoski 11104 and castro $3 \mathrm{~cm} 010 \overline{1} 19$: we need 0.1 to $\overline{0} .2 \mathrm{~dB}$ for MN (castro $3 \mathrm{~cm} \overline{0} 1-0119$ says 0.23 to 0.45 dB) as well as 0.2 to 0.4 dB for MPN. The total penalties should be kept below 4.6 dB , which is unreasonably high already. This should be done with a formula, as for 100GBASE-SR4, so as not to penalise good transmitters.
This remedy keeps the 150 m reach for OM5, although the 100 m transmitters have to be slightly better than needed for 100 m on OM4. $\mathrm{M}=0.0065^{*}$ Pave may be on the low side: 100GBASE-SR4 has M2 $=0.0175^{*}$ Pave.

SuggestedRemedy

Insert:
Equation (150-1) is used in place of Equation (121-11).
$\mathrm{R}=$ sqrt(sigmaG^2 + sigmaS^2 $-\mathrm{M}^{\wedge} 2$) (150-1)
where $M=0.0065$ Pave
In 150.8.10 Stressed receiver sensitivity, refer to the new Eq. 150-1 (as above) and say that:
the value of M in Equation (150-1) is set to zero
(or, leave this section referring to Eq. 121-11 but to avoid confusion, add:
NOTE--The parameter M of Equation (150-1) is not used.)
Reduce the limits for TDECQ and TDECQ-10log10(Ceq), from 4.5 dB to $4.3 \mathrm{~dB}(0.2 \mathrm{~dB}$ lower than the SECQ values, allowing for 0.3 dB MPN penalty with associated Pcross, including the 0.1 dB already in the draft budget)
In the budget table 150-9, the power budget doesn't change, the allocation for penalties for 70 m and 100 m decrease from 4.6 to 4.5 dB and the additional insertion losses for 70 m and 100 m increase by 0.1 dB to $0.4,0.3 \mathrm{~dB}$.

Response
 Response Status \mathbf{U}

ACCEPT IN PRINCIPLE.
See response to comment \#29. The consensus was that 4.9 dB allocation for tota penalties is acceptable for 400GBASE-SR4.2

Comment Type E Comment Status A
"other IEEE 802.3 amendment projects running in parallel (e.g., IEEE P802.3cd) that modified the same text and tables" but 802.3cd isn't running in parallel now, it's published (although not finished - see other comments).

SuggestedRemedy

Change 3cd to 3 cn , or change to:
other IEEE 802.3 amendments (e.g., IEEE Std 802.3 cd) and projects running in parallel (e.g., IEEE P802.3cn) that modify the same text and tables.

Response
Response Status C
ACCEPT IN PRINCIPLE.
Replace "IEEE P802.3cd" with "IEEE P802.3cn".

CI 150	$S C$	150.8.5.1	P58

Comment Type TR Comment Status \mathbf{R}

Equalizing a signal after a 9 GHz BT4 filter with a 5 -tap FFE needs at least one precurso unless the signal is carefully pre-distorted. If it is, and a fourth post-cursor is needed, the same transmitter seen after a fast channel, e.g. a short fibre, can be difficult to receive (outside the TDECQ spec limit) because the 5-tap FFE can't correct the fourth post-cursor and the (now -ve) first precursor at the same time
The fast channel can have less mode partition noise but more modal noise, but the problem remains.
In practice, it seems that TDECQ uses at least one precursor for real MMF transmitters Possible remedies include:
Ensure there is at least one precursor (tap 2 or 3 is the largest), or
Modify TDECQ if tap 1 is the largest by adding an interferer representing the uncorrected precursor that this weird transmitter would have on a short link, or
Defining MMF TDECQ with fast and slow channels, in the same spirit as SMF with high and low dispersion, noting that if tap 2 or 3 is the largest it can be assumed that
TDECQ(fast) < TDECQ(slow), so no need to determine it. It should be possible to make a reasonable estimate of TDECQ(fast) from the dataset of a TDECQ(slow) measurement,
but it's not likely that one would need to do that, as noted above.

SuggestedRemedy

To ensure that the transmitter is good enough for the intended range of channel bandwidths, change "Tap 1, tap 2, or tap 3, has" to "Tap 2 or tap 3 has".

Response
 Response Status U

REJECT
This comment is similar to comments \#48 against D1.0, \#14 against D1.1 and \#9 against D1.2, which were rejected.
Limiting to at most three post-cursors in the reference equalizer means that the transmitted signal, when propagated through the TDECQ reference response, cannot have a significant amount of fourth post-cursor response at the receiver without suffering higher TDECQ penalty.
Insufficient evidence has been provided to justify a change.
Straw poll
Should a conditional TDECQ test with SECQ bandwidth be added to the draft?
Y: 4
N. 6

Cl 116	SC 116.1.3	P23	L2 27
Dawe, Piers	Mellanox		\# 15

Comment Status A
This PHY doesn't have bidirectional lanes. Following discussion on D1.0 comment 7, we chose a different description in:
1.4.110a 400GBASE-SR4.2: IEEE 802.3 Physical Layer specification for $400 \mathrm{~Gb} / \mathrm{s}$ using 400GBASE-R encoding over eight lanes on multimode fiber in a bidirectional WDM format, with reach up to at least 150 m . (See IEEE Std 802.3, Clause 150.)
This text should be consistent.

SuggestedRemedy

Change

$400 \mathrm{~Gb} / \mathrm{s}$ PHY using 400GBASE-R encoding over eight bidirectional lanes of multimode fiber, with reach up to at least 150 m (see Clause 150)
to
$400 \mathrm{~Gb} / \mathrm{s}$ PHY using 400GBASE-R encoding over eight lanes on multimode fiber in a bidirectional WDM format, with reach up to at least 150 m (see Clause 150)
Response
Response Status C
ACCEPT.

IEEE P802.3cm D2.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber Initial Working Group ballot comments
CI 116 SC 116.2.5 \quad P24
Mellanox
Dawe, Piers
Comment Type E Comment Status A

This isn't the base text in force, 802.3cd has altered it.
This isn't the second sentence, it's the second paragraph
SuggestedRemedy
Either:
Change the second sentence of the second paragraph of 116.2.5 as follows:
The 400GBASE-R PMDs and their corresponding media are specified in Clause 122 through Clause 124 , and in Clause 138 and Clause 150 .
Or:
Change the second paragraph of 116.2.5 (as amended by IEEE Std 802.3cd-2018) as follows:
The 200GBASE-R PMDs and their corresponding media are specified in Clause 121, and
Clause 122, and Clause 136 through Clause 138. The 400GBASE-R PMDs and their corresponding media are specified in Clause 122 through Clause $124<u l>$, and in Clause 138 and Clause $150</ \mathrm{ul}>$.

Response

Response Status
ACCEPT IN PRINCIPLE.
Replace the editing instruction with:
"Change the second paragraph of 116.2.5 (as amended by IEEE Std 802.3cd-2018) as follows:
The 200GBASE-R PMDs and their corresponding media are specified in Clause 121
Clause 122, and Clause 136 through Clause 138. The 400GBASE-R PMDs and their corresponding media are specified in Clause 122 through Clause $124<$ ul>, Clause 138, and Clause 150"

| CI 138 | SC 138.10.1 |
| :--- | :--- | :--- | :--- | :--- |

| Dawe, Piers | Mellanox |
| :--- | :--- | :--- |
| Comment Type E Comment Status A | |

Wording should be improved. In the remedy, the stricken "and" is not shown. The last option is the cleanest

SuggestedRemedy

Change

Only applies to 100GBASE-SR2, 200GBASE-SR4, and 400GBASE-SR8. to
Applies only to 100GBASE-SR2, 200GBASE-SR4, and 400GBASE-SR8. or
100GBASE-SR2, 200GBASE-SR4, and 400GBASE-SR8 only or
Except 50GBASE-SR
Response Response Status
ACCEPT IN PRINCIPLE.
Replace "Only applies" with "Applies only".

CI 138	SC 138.11.4.1	P44	$L 50$	$\# 18$

Comment Type
Tidying up, now the list has four items in it
SuggestedRemedy
Change
Compatible with 50GBASE-R or 100GBASE-R or 200GBASE-R or 400GBASE-R PCS and PMA
to
Compatible with 50GBASE-R, 100GBASE-R, 200GBASE-R, or 400GBASE-R PCS and PMA
Response Response Status C
ACCEPT.

CI 150 SC 150.10	P62	L 42	\# 19
Dudek, Mike		Marvell	
Comment Type E	Comment Status A	Bucket	

Comment Type E Comment Status A
It is not obvious what a transceiver type is at this point in the document.
SuggestedRemedy
Change "opposite type" to "opposite pair type" Consider adding a sentence in paranthesis "(Bidrectional transceiver pair types are defined in 150.6)"
Response
Response Status C
ACCEPT IN PRINCIPLE.
In line 38 and line 39, replace "bidirectional transceivers" with "TxRx pairs" In line 41 and line 42, replace "bidirectional transceiver" with "TxRx pair".

IEEE P802.3cm D2.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber Initial Working Group ballot comments

CI 130	SC 130.10.3.1	P40	L20
Ghiasi, Ali	Ghiasi Quantum	$\# 20$	

Comment Type TR Comment Status D

Two MDI are defined for 400GBASE-SR8, option two-row connector is not compatible with
installed cable plant but option B single row connector is compatible with installed cable plant and this should be noted.

SuggestedRemedy
Add following text, Two-row twelve fiber interface is not compatible with installed cable plant but single-row sixteen-fiber interface is compatible with installed cable plant.

Proposed Response Response Status Z
REJECT.
This comment was WITHDRAWN by the commenter.

Both swanson_3cm_01b_0518 and kolesar_3cm_01_0518 indicated that the Dual-Row 12 f MPO (or 24 f MPO) connector/interface is compatible with structured cabling. From kolesar_3cm_01_0518: "Compatible w standard cabling polarity if without lane numbers of [QSFP-DD] MSA".
Furthermore, both MDIs are supported by the polarity of cabling systems in TIA 568.3.

Cl 45	SC 45.2.1.21.1a	P21	L25
Hajduczenia, Marek	Charter Communications	\# 23	

Comment Type E Comment Status A

Make sure line break is not allowed on "/" character to avoid breaking PMA/PMD across lines

SuggestedRemedy
Multiple locations in the draft
Response
Response Status C

ACCEPT IN PRINCIPLE
Remove "/" from the list of characters in "Allow Line Breaks After" for Clause 45.

Hajduczenia, Marek Charter Communications
Comment Type E Comment Status R
"must" in the text of the footnote, we typically void this word per style guide
SuggestedRemedy
Change "must behave" to "is expected to behave"
Response
Response Status C

REJECT
The text is consistent with the equivalent footnote in earlier clauses. The commenter may pursue this matter via IEEE 802.3 Maintenance.

SuggestedRemedy

Remove 1.5 unless there is anything that needs to be added

Response

Response Status C
ACCEPT IN PRINCIPLE.
See response to comment \#2.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn SORT ORDER: Comment ID

IEEE P802.3cm D2.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber Initial Working Group ballot comments

CI 138	SC 138.1	P28	L12
Hajduczenia, Marek	Charter Communications	\# 26	

Comment Type
ER
Comment Status \mathbf{R}
Bucket

Lists of PHYs in multiple locations - please avoid enumerating all the PHYs over and over again

SuggestedRemedy

Change repeated enumerations "50GBASE-SR, 100GBASE-SR2, 200GBASE-SR4, and 400GBASE-SR8" indicatign all PMDs to "Clause 138 PMDs" - it is simpler to maintain in the future - multiple locations in the draft

Response
 Response Status U
 REJECT.

The enumeration of the PMDs avoids ambiguity.

CI 138	SC 138.5.1	P34	L13
Hajduczenia, Marek	Charter Communications	\# 27	

Comment Type T Comment Status \mathbf{R}

Bucket
Figure $138-2$ should use $<0: n>$ as number of lanes being used, and then descriptive text can be changed as follows: "four lanes, two lanes, and one lane per direction, respectively" to "four lanes $(n=8)$, two lanes $(n=4)$, and one lane $(n=2)$ per direction, respectively" - in thsi way, you do not need to replace the figure every time a new PMD is added.
SuggestedRemedy
Per comment
Response
Response Status C
REJECT.
Adopting the change in the suggested remedy would mean that the diagram showing three lanes would directly apply to a single lane PMD. This would make labeling the three lanes difficult as 50GBASE-SR only has lane 0 . Also, there is no expectation that a PMD with a lane count higher than 8 will be added to this clause.

CI 138	SC 138.11.3	P44	L1
Hajduczenia, Marek	Charter Communications	\# 28	

Comment Type E Comment Status \mathbf{R}
Bucket Rather than reproduce the whole table, it is enough to indicate in editprial instructions to insert a new row as shown below under SR4

SuggestedRemedy

Per comment

Response Response Status C
REJECT.
Reproducing the table avoids ambiguity.

CI 150	SC 150.7.1	P54	L18
Ingham, Jonathan	Foxconn Interconnect Technology		

Comment Type T Comment Status A

There is an opportunity to allow component re-use in PMDs defined outside of 802.3, particularly 100 GBiDi , with a goal of lowered cost. Please refer to the supporting presentation.

SuggestedRemedy

In Table 150-7, change "Average launch power, each lane (min) " from -6.5 dBm to -6.2 dBm.
In Table 150-7, change "Outer Optical Modulation Amplitude (OMAouter), each lane (min)" from -4.5 dBm to -4.2 dBm .
In Table 150-7, change "OMAouter - TDECQ, each lane (min)" from -5.9 dBm to -5.6 dBm .
In Table 150-8, change "Average receive power, each lane (min)" from -8.5 dBm to -8.2
dBm.
In Table 150-9, change "Power budget (for max TDECQ)" from 6.6 dB to 6.9 dB .
In Table 150-9, add a row "Allocation to allow component re-use in PMDs defined outside 802.3 " with a value of 0.3 dB for all cable types.

Response

Response Status C

ACCEPT IN PRINCIPLE.
In Table 150-7, change "Average launch power, each lane (min) " from -6.5 dBm to -6.2 dBm.
In Table 150-7, change "Outer Optical Modulation Amplitude (OMAouter), each lane (min)" from -4.5 dBm to -4.2 dBm .
In Table 150-7, change "OMAouter - TDECQ, each lane (min)" from -5.9 dBm to -5.6 dBm . In Table 150-8, change "Average receive power, each lane (min)" from -8.5 dBm to -8.2 dBm .
In Table 150-9, change "Power budget (for max TDECQ)" from 6.6 dB to 6.9 dB .
In Table 150-9, change "Allocation for penalties (for max TDECQ)" from 4.6 dB to 4.9 dB .

Cl 150 SC 150.6	P 53	L23	\# 30	
Ingham, Jonathan	Foxconn Interconnect Technology			
Comment Type E	Comment Status A			Bucket
Typographical error.				
SuggestedRemedy				
Replace "capble" with "capable".				
Response	Response Status C			
ACCEPT.				

IEEE P802.3cm D2.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber Initial Working Group ballot comments

Cl 00 SC 0	P2	L1	\# 31
Kabra, Lokesh	Synopsys		Bucket
Comment Type	E	Comment Status A	

Does not mention new clause added in 802.3 cm as done in Abstract of other specifications like 802.3cd

SuggestedRemedy
Change "Std 802.3-2018 adds Physical" to "Std 802.3-2018 and adds Clause 150. This amendment adds Physical"

Response
Response Status C
ACCEPT IN PRINCIPLE.
Replace "Std 802.3-2018 adds Physical" with "Std 802.3-2018 adds Clause 150. This amendment adds Physical".

CI 00 SC 0	P10	L51	\# 32	
Kabra, Lokesh	Synopsys			
Comment Type	E	Comment Status A		Bucket

Does not mention new clause added in 802.3 cm as done in Abstract of 802.3cd mentioned above in line 44 of page 10

SuggestedRemedy

Change "Std 802.3-2018 and adds Physical" to "Std 802.3-2018 and adds Clause 150
This amendment adds Physical"
Response Response Status C
ACCEPT.

CI 1 SC 1.5	P17	L29	\#
Kabra, Lokesh		Synopsys	
Comment Type	E	Comment Status A	
Corket			

I did not find the term "ABBR" anywhere in this draft or 802.3cd
SuggestedRemedy
Delete the line

Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment \#2.

CI 45	SC 45.2.1.6	P19	L24	\# 34

Comment Type T Comment Status R
reserved value of 1011110 can be used for SR4.2 to avoid eating up unnecessary reserved value that may be required for 100 G serial modes

SuggestedRemedy
Change "1011110 = reserved" to "1011110 = 400GABSE-SR4.2 PMA/PMMD"
Unstrike line 19 "11xxxxx = reserved"
Delete next 6 rows "111xxxx = reserved" to "1100000 $=400 \mathrm{GBASE}-$ SR4. 2 PMA/PMD"
Response Response Status c
REJECT.
The value of 1011110 has been allocated to "400GBASE-CR4 PMA/PMD" so that the block from 1011101 to 1100100 will be in descending reach order when the currently active projects all complete:
400GBASE-ZR PMA/PMD
400GBASE-ER8 PMA/PMD
400GBASE-LR4
400GBASE-FR4
400GBASE-SR4.2 PMA/PMD
400GBASE-SR8 PMA/PMD
400GBASE-CR4 PMA/PMD
400GBASE-KR4 PMA/PMD

Cl $\mathbf{1 3 8}$	SC 138.1	P 28	L23	\# 35
Kabra, Lokesh		Synopsys		
Comment Type E	Comment Status R		Bucket	

Adding 400GBASE-SR8 column to Table 138-3 does not look good since all the rows except "117-RS" are exclsuive and duplicated for 200G \& 400G. It may be neater to retain Table 138-3 as-is for 200G and add another table for 400GBASE-SR8. It will look logical as we already have Table 138-1 \& Table 138-2 for 50G \& 100G respectively

SuggestedRemedy
Change "Table 138-2, or Table 138-3" in line 19 to "Table 138-2, Table 138-3 or Table 138$4{ }^{4}$
Retain Table 138-3 as is for 200G and add another Table 138-4a for 400G;
Response
Response Status C

REJECT.
The tables for 200GBASE-SR4 and 400GBASE-SR8 are combined in the interests of clarity. See the final response to comment \#11 against P802.3cm D1.1.

Cl 138	SC 138.3.1	P32	L23
Kabra, Lokesh	Synopsys		\# 36

Kabra, Lokesh Synopsys
Comment Type E Comment Status A

Reference to 116.3 is incorrect for Delay Constraints. In 802.3cd, it is 116.4
SuggestedRemedy
Change "116.3 to 116.4"
Response
Response Status

ACCEPT IN PRINCIPLE
Replace "116.3" with "116.4"

CI 1 SC 4	P17	L16	\# 37
Kochuparambil, Beth	Cisco Systems, Inc.		
Comment Type E	Comment Status R		Bucket

I don't see precedence for a $\times 110$ a and x 110b subclause

SuggestedRemedy

Use different subclause numbering. ie: 1.4.111 and 1.4.112 (shifting the remaining subclause numbering)
Response Response Status C
REJECT.
The numbering is correct and in accordance with the IEEE style manual. The numbering applies only to the amendment; the subclauses will be renumbered in the next revision of IEEE Std 802.3. As an example, IEEE Std 802.3bs-2017 inserted 1.4.72b for 200GBASEDR4; this was renumbered as 1.4.83 in IEEE Std 802.3-2018.

Cl 150	SC 150.7.3	P56	L14
Kolesar, Paul	CommScope		\# 38

Comment Type TR Comment Status A
Proper allocations for modal noise penalty have been the subject of several past comments and contributions. In king 3 cm 010319 (King) a reference was made to simulation work done by Petar Pepeljugoski that provides insights to the magnitude of modal noise penalty (MNP) as a function of mode selective loss (MSL) and mode partition noise k factor
(MPNk). However, the referenced graphical data for MPNk $=0.1$ (i.e. the relevant value for VCSELs) was obscured by data at higher MPNk values. Fortunately, Petar subsequently provided the complete unobscured data for MPNk $=0.1$ and gave permission to use it.

I fitted two trendline functions to the upper boundary of dense data to project towards 1.5 dB MSL. The exponential fit projected 0.08 dB and the 2 nd order polynomial fit projected to 0.05 dB MNP at 1.5 dB MSL (i.e. the maximum connection loss allocation stated in the draft standard). Of these two, the 2 hd order polynomial appears the more resonable, as the exponenetial curve accelerates too quickly. See related contribution from Kolesar.

Converting the 0.05 dB value to account for PAM4 signaling, FEC and link bandwidth as shown in King, results in a modal noise penalty allocation of 0.19 dB for 400GBASE-SR4.2. The current allocation for both modal noise and mode partition noise is 0.1 dB , and therefore deemed inadequate.

SuggestedRemedy

Increase the power budget by 0.2 dB from 6.6 dB to 6.8 dB by adjustments to Tx and/or Rx Increase the power budget by 0.2 dB from 6.6 dB to 6.8 dB by adjustments to Tx and/or Rx
specifications. The allocation for penalties on page 56 line 18 should be commensurately ncreased by 0.2 dB from 4.6 to 4.8 dB . Note that these changes are proposed to an informative table, but are the result of changes, to be determined, in normative tables 150 7 and/or 150-8.

ACCEPT IN PRINCIPLE.
See response to comment \#29.

IEEE P802.3cm D2.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber Initial Working Group ballot comments

CI 150	SC 150.7.3	P56	L7
Lingle, Robert	OFS	\# 39	

Lingle, Robert
Comment Type \quad T Comment Status A
An allocation for modal noise (MN) plus mode partition noise (MPN) penalties of 0.1 dB was assumed when preparing Clause 138, based on an analysis reiterated recently in king 3 cm 01 0319.pdf, extrapolating data from pepeljugoski 01 0108.pdf to the case of PAM-4 signaling with KP4 FEC, obtaining an estimate of 0.08 dB for MN penalty. Relevant data on p 13 for $\mathrm{k}=0.1$ in the latter contribution was obscured by overlay of other data. The unobscured data from Pepeljugoski's earlier work, which has been shared with the Task Force, raises the estimate of MN penalty to 0.19 dB . The experimental work in
sun_3cm_01a_0319.pdf argued for a MN penalty not greater than 0.25 dB . Taken together, these findings argue for raising the allocated penalty for MPN and MN from 0.1 to 0.3 dB .

SuggestedRemedy

Change two entries in Table 150-9 as follows. 1) Change Power budget from 6.6 to 6.8 dB .
2) Change the Allocation for Penalties from 4.6 to 4.8 dB . Make appropriate adjustments in Tables 150-7 and/or 150-8 to accommodate the increased allocation for penalties
Response
Response Status C
ACCEPT IN PRINCIPLE.
See response to comment \#29

CI 150 SC 150.8.8	P59	L13	\# 40
Lusted, Kent	Intel		

Comment Type ER Comment Status A
Bucket
The title of this subsection is RIN12OMA. However, the first sentence of the first paragraph references RIN. Is the name of the method RIN or RIN12OMA?
SuggestedRemedy
Consider changing the title of subsection 150.8 .8 to be "Relative intensity noise (RIN)" Response

Response Status C

ACCEPT IN PRINCIPLE.
In line 15, replace "RIN" with "RIN12OMA", where "12" is a subscript

Cl 1	SC 1.5	P 17	L29

Comment Type ER Comment Status A
The abbreviation "ABBR" is not used anywhere else in the document. I suspect that it is leftover from the FrameMaker template.

SuggestedRemedy
Either define and use the abbreviation "ABBR" or remove the entry from the document
Response Response Status C

ACCEPT IN PRINCIPLE
See response to comment \#2.

Cl 150	SC 150.8.8	P59	L16
Lusted, Kent	Intel	\# 42	

Comment Status A
Bucket
Comment Type TR
The first list item "a" of exceptions to the methodology in 52.9.6 states that "the optical return loss is 12 dB ". In IEEE 802.3-2018 Section 4 (page 638), the procedure in 52.9.6.2 references "optical return loss specified in Table 52-7 for 10GBASE-S, Table 52-12 for 10GBASE-L, and Table 52-16 for 10GBASE-E" which have an optical return loss limit of 12 dB .

This is confusing because the table values are already 12 dB yet it is listed as an exception SuggestedRemedy

Consider removing exception item "a" from the list
Response
Response Status C
ACCEPT IN PRINCIPLE.
Replace "shall be as defined by the measurement methodology of 52.9.6 with the following exceptions" with "shall be as defined by the measurement methodology of 52.9.6 using an optical return loss of 12 dB and with the following exceptions". Delete item (a) in the list and rename items (b) and (c) appropriately.

Cl 1	SC 1.5	P17	L26

Delete subcluase 1.5 as it makes no changes to the base standard

SuggestedRemedy

Delete subcluase 1.5
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment \#2.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn SORT ORDER: Comment ID

IEEE P802.3cm D2.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber Initial Working Group ballot comments

Cl 138	SC 138.1	P28	L13	\# 44
Marris, Arthur		Cadence Design Systems		
Comment Type	E	Comment Status A		Bucket

Type
Comment Status A
No need to add the word "four". It reads better if you simply delete the word "three".

Bucket

SuggestedRemedy
Delete the word "four" (which should have been underlined) on line 13
Response
Response Status C

ACCEPT.

Cl 1	SC 1.4.110a	$P 17$	L16
Marris, Arthur	Cadence Design Systems	\# 45	

Comment Type TR Comment Status A

400GBASE-SR4.2 is a really rubbish nomenclature. Choose something better or at least explain why it is called 4.2 in the definition.
SuggestedRemedy
Add extra sentences at the end of 400GBASE-SR4.2
"400GBASE-SR4.2 uses the same medium as 200GBASE-SR4. The 4.2 nomenclature is used to indicate that transmission is actually over eight fibres but in a bi-directional manner."

Response

Response Status
ACCEPT IN PRINCIPLE.
The IEEE style guide recommends that definitions in 1.4 are kept short and that more detailed descriptions are provided in the overview section of the relevant clause. In the first paragraph of 150.1, insert: "400GBASE-SR4.2 uses the same media as 200GBASE-SR4. The 4.2 nomenclature is used to indicate that transmission is over four fiber pairs (eight individual fibers) with the use of two wavelengths propagating in opposite directions on each individual fiber."

CI 150	SC $\mathbf{1 5 0 . 8 . 1 0}$	$P 60$	$L \mathbf{5 0}$
Marris, Arthur	Cadence Design Systems	\# 46	

Comment Type Eomment Status A Bucket
Minus sign using incorrect font.
SuggestedRemedy
Remove the blue colour from the minus sign in:
SECQ - 10log10(Ceq)
Response
Response Status
ACCEPT.

CI 1	SC 1.4	$P 17$	$L 18$

Comment Type T Comment Status R
Bucket
The reach of 150 m does not match the project objective of 100 m specified here:
http://www.ieee802.org/3/cm/Adopted_Objectives_NGMMF_01_08mar18.pdf
SuggestedRemedy
No change to the text is required. I would be curious to know why a longer reach was chosen.

Response Response Status C
REJECT.
The comment does not make a suggestion for a change to the draft. For information, the objective of 100 m was chosen with OM4 cable in mind. Analysis early in the project indicated that a solution that supports 100 m of OM4 cable will support 150 m of OM5 cable; hence this capability was included in the baseline proposal for 400GBASE-SR4.2.
CI 150 SC 8.9

Peter, Stassar Huawei
Comment Type E Comment Status A
The unit for Receiver sensitivity in Equation 150-1 should be dBm instead of dB. Similar in Subclause 138.8.9, even when it is not part of the changes to 138 .

SuggestedRemedy

Replace "dB" by "dBm"

Response Response Status C
ACCEPT IN PRINCIPLE.
Replace "dB" with "dBm".
Regarding 138.8.9, the relevant text is not present in the P802.3cm draft and the
commenter is recommended to pursue this matter via IEEE 802.3 Maintenance. Note that a similar issue exists in Clauses 121 and 122

IEEE P802.3cm D2.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber Initial Working Group ballot comments

CI 1 SC 1.5	P17	L29	\# 50
Trowbridge, Steve	Nokia		

Comment Type E
Comment Status A
Bucket Left over instructions for how to use the template remain in the draft.

SuggestedRemedy

Either remove the example and instructions "ABBR expanded version [abbreviations use paragraph tag AcrList,ac]", or remove entirely clauses 1.3 and 1.5 from the draft which do not identify anything to be added or changed
Response
Response Status C
ACCEPT IN PRINCIPLE.
See responses to comments \#1 and \#2.
CI FM SC FM \quad P1

Zimmerman, George CME Consulting/ADI, APL Gp, Aquantia, BMW, Cisco
Comment Type E Comment Status \mathbf{R}

Bucket
Since 802.3 cg is in standards association ballot, this amendment will likely be on 802.3-
2018 as modified by $802.3 \mathrm{cg}-201 \mathrm{x}$ as well...
SuggestedRemedy
Add 802.3cg-201x to the list of amendments after 802.3bt-2018. Also add 802.3cg summary to the frontmatter at page 10.
Response Response Status C
REJECT.
IEEE P802.3cg has not yet completed the standardization process.

Cl 138	SC 138.4	P33	L43
Zimmerman, George	CME Consulting/ADI, APL Gp, Aquantia, BMW, Cisco		
Comment Type	TR	Comment Status A	Bucket

Comment Type TR Comment Status A Buck

While the transmit disables are parameterized $n-1$ to 0 , the register/bit numbers are just 1.10.8 to 1.10.1, which leaves the reader to guess whether $n-1$ is fixed at 1.10 .8 , or 0 at 1.10.1 (note, these are clear in clause 45 , but the whole purpose of these redundant tables is to keep the reader from having to go back to clause 45)
SuggestedRemedy
Change "1.10.8" to "1.10.n"
Response
Response Status

ACCEPT.

Cl 138	SC 138.5.4	P35
Zimmerman, George	CME Consulting/ADI, APL Gp, Aquantia, BMW, Cisco	
Comment Type E	Comment Status A	

Typo-100GBSE-SR2 should be 100GBASE-SR2 (service to humanity - it's wrong in the base standard - maintenance has been submitted)

SuggestedRemedy

Change "100GBSE-SR2" to "100GBASE-SR2"
Response Response Status
ACCEPT.

| CI 138 | SC 138.4 | P33 22 | \#2 |
| :--- | :--- | :--- | :--- | :--- |

Zimmerman, George CME Consulting/ADI, APL Gp, Aquantia, BMW, Cisco Comment Type TR Comment Status A Bucket

While the transmit disables are parameterized $n-1$ to 0 , the register/bit numbers are just
1.9.8 to 1.9.1, which leaves the reader to guess whether $n-1$ is fixed at 1.9.8, or 0 at 1.9.1 (note, these are clear in clause 45 , but the whole purpose of these redundant tables is to keep the reader from having to go back to clause 45)
SuggestedRemedy
Change "1.9.8" to "1.9.n"

Response

Response Status
ACCEPT.

IEEE P802.3cm D2.0 $400 \mathrm{~Gb} / \mathrm{s}$ over Multimode Fiber Initial Working Group ballot comments

CI 150	SC 150.5.4	P51	$\angle 43$	\# 55

Zimmerman, George
CME Consulting/ADI, APL Gp, Aquantia, BMW, Cisco

Comment Type T Comment Status R

The word "must" should be avoided, because it looks like a hidden shall. The meaning would be unchanged by simply deleting "must". However, as this is worded, this might be an implementation note. "should" or "is strongly recommended" is appropriate.
"As an unavoidable consequence of the requirements for the setting of the
SIGNAL DETECT parameter,
mplementations must provide adequate margin between the input optical power level at which the
SIGNAL_DETECT parameter is set to OK, and the inherent noise level of the PMD
including the effects of
crosstalk, power supply noise, etc."
SuggestedRemedy
Change "must provide" to "provides" or, alternatively, Replace "must" with "should" in the referenced sentence.
Response
Response Status C
REJECT.
The text is consistent with the equivalent text in earlier clauses. The commenter may pursue this matter via IEEE 802.3 Maintenance

CI $\mathbf{1 5 0}$	SC 150.5.4	P51	L47
Zimmerman, George	CME Consulting/ADI, APL Gp, Aquantia, BMW, Cisco		

Zimmerman, George Comment Status \mathbf{R}
"Various implementations are permitted by this standard, including implementations that generate..." The standard is actually implementation-independent. You're trying to give an example, but in the process, suggest that somewhere the standard specifies a bunch of specific implementations and "permits" them.
SuggestedRemedy
Replace "Various implementations are permitted by this standard, including
implementations that generate..." with "Implementations may generate..."

Response

Response Status C
REJECT.
There was no consensus to make a change to the draft. The current text is consistent with multiple earlier clauses.
Straw poll
Do you accept the proposed response below?
Y: 4
N: 6
Replace the fourth paragraph of 150.5 .4 with "As examples, implementations may generate the SIGNAL_DETECT parameter values in response to the amplitude of the modulation of the optical signal or implementations may respond to the average optical power of the modulated optical signal."
Cl $150 \quad$ SC 150.5.5

CME Consulting/ADI, APL Gp, Aquantia, BMW, Cisco

Subclause 150.5.5 tells the user nothing about the lane-by-lane signal detect function, or how it is different from the global signal detect function specified in 150.5.4. The text
"Various implementations of the Signal Detect function are permitted by this standard"and "Various implementations of the Signal Detect function are permitted by this standard"and standard is implementation independent and does not "permit implementations" but rather specifies behavior, electrical, and sometimes physical characteristics which
implementations must conform to. Also, there is no content in this subclause other than
the description of how MDIO reports this when implemented. It sets no requirements on the function. Unfortunately, I can't say what the requirements are for lane-by-lane from this
SuggestedRemedy
Delete "Various implementations of the Signal Detect function are permitted by this standard."
Add requirements, or a reference to requirements elsewhere, as relevant to lane-by-lane signal detect, or else, rename or combine 150.5 .5 with the previous subclause
Response
Response Status C
REJECT
The text is consistent with multiple earlier clauses.

CI 150	SC 150.8.10.1	P61	L $\mathbf{6 1}$

Zimm Comment Status A

Bucket
"10 LB" Looks like a unit, folding units into the variable. It would be much clearer if it said " $10 \times$ LB MHz" where x is the multiplication symbol and there are nonbreaking spaces between 10, x, LB and MHz
SuggestedRemedy
Replace "10 LB" by"10 x LB MHz" where x is the multiplication symbol and there are nonbreaking spaces between $10, \mathrm{x}, \mathrm{LB}$, and MHz .
Response Response Status
ACCEPT IN PRINCIPLE.
Italicize "LB".

