Channel wavelength ranges for 400GBASE-4.2 OM3 and OM4 effective bandwidth, modal and chromatic dispersion included

> 802.3cm ad hoc, 28th June 2018 Jonathan King, Finisar

Supporter

• Jonathan Ingham, FOIT

Introduction

- Fibre bandwidth was calculated from combining the TIA proposed worst case EMB for OM3 and OM4, and an effective chromatic dispersion bandwidth, BW_{CD}, as used in the 10GE spreadsheet model
- The effective bandwidth BW_{eff}, in MHz.km, is calculated for a 0.6 nm rms spectral width transmitter, following the method used in the 10GE spreadsheet model.

OM3 and OM4 effective bandwidth graph

Effective bandwidth (MHz.km) table

• Effective bandwidth (in MHz.km) including modal and chromatic dispersion

Wavelength (nm)	OM3	OM4	
844	1591	2398	5
850	1665	2531	Negligible change
863	1553	2399	
874	1460	2246	
888	1351	2044	
900	1267	1887	
916	1169	1704	
918	1159	1683	✓ 1.3% lower

Concluding remarks

- Nominal 850 nm channel should extend from 844 nm to 863 nm
 - Represents a negligible change to the minimum effective bandwidth compared to a range from 850 nm to 863 nm
- Nominal 910 nm channel should extend from 900 nm to 918 nm
 - Represents a 1.3 % lower minimum effective bandwidth compared to a range from 900 nm to 916 nm

Back up

- TIA worst case OM3 and OM4 EMB
- Chromatic dispersion, effective bandwidth

TIA worst case EMB for OM3 and OM4

(E.5)

MMF effective bandwidth calculation

- Effective bandwidth was estimated from combining the TIA proposed worst case EMB for OM3 and OM4, and the effective chromatic dispersion bandwidth, BW_{CD}, following the 10GE spreadsheet model
- The effective bandwidth BW_{eff}, in MHz.km, was calculated for a 0.6 nm rms spectral width transmitter, following the equations used in the 10GE spreadsheet model:

$$BW_{eff} = (EMB^{-2} + BW_{CD}^{-2})^{-\frac{1}{2}}$$

where

$$3W_{CD} = (1.87 \times 10^5/U_w) \times (D^2 + E^2)^{-\frac{1}{2}}$$

and

$$D = (\lambda/4) \times S_0(1 - (U_0/\lambda)^4)$$

E = 0.7 x S_o x U_w

 $\boldsymbol{\lambda}$ is the centre wavelength

 U_0 is the dispersion zero of the fibre, set to 1316 nm;

 S_0 is the dispersion slope of the fibre, set to 0.10275 ps/nm².km

 U_w is the rms spectral width, set to 0.6 nm