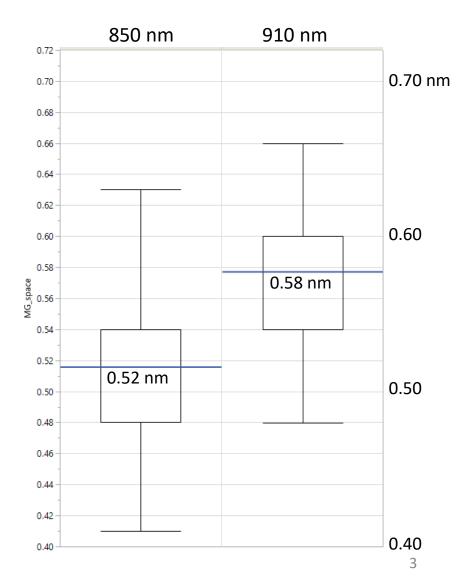
RMS Spectral Width

Ramana Murty Broadcom

October 25, 2018

IEEE 802.3cm 400 Gb/s over Multi-mode Fiber Task Force


Introduction

- RMS spectral width is specified as maximum 0.6 nm for both 844 863 nm and 900 918 nm channels in Table 200 7 of Draft 1.0.
- A maximum of 0.65 nm was suggested in king_3cm_01a_0718 for the 900 918 nm channel based on the lower fiber chromatic dispersion at the longer wavelength channel.
- A change from 0.60 to 0.65 nm for the maximum RMS spectral width on the 900 918 nm channel will promote supply assurance and reduce the manufacturing/test cost of 900 918 nm VCSEL arrays.

Mode Spacing

Mode groups are spaced farther apart on average in VCSELs for the 900-918 nm channel compared to the 844-863 nm channel.

Mode group spacing (LP01 – LP11) from wafers with aperture size within a 0.25 μm window.

RMS Spectral Width

Impact of a change in RMS Spectral Width:

- Mode partition noise penalty
- TDECQ filter reference response

MPN

- The product of the fiber chromatic dispersion D and RMS spectral width U_W is a figure of merit for the mode partition noise penalty (Ogawa-Agrawal model).
- Product D·U_W is lower for the 900 918 nm channel with a max U_W of 0.65 nm when compared to the 844 863 nm channel with max U_W of 0.60 nm.

MMF	λ (nm)	D (ps/(nm·km)) [1]	Max U _w (nm)	Product D·U _W (ps/km)		P _{mpn} (dB) for 100m OM4 with k = 0.1 [2]
OM3 OM4	900	-89.8	0.60	-53.9	Lower at 900 nm	0.04
			0.65	-58.4 -		0.05
			0.70	-62.9		0.07
	844	-115.7	0.60	-69.4 —		0.09
						P _{mpn} (dB) for 150m OM5 with k = 0.1 [2]
OM5	900	-78.7	0.60	-47.2	Lower	0.10
			0.65	-51.1		0.13
			0.70	-55.1		0.17
	844	-101.2	0.60	-60.7	900 nm	0.23

- 1. Fiber chromatic dispersion calculated using 10 GbE spreadsheet methodology with zero dispersion wavelength U_0 of 1320 nm and zero dispersion slope S_0 of 0.11 ps/(nm²·km) for OM3 and OM4, and U_0 = 1328 nm and S_0 = 0.0935 ps/(nm²·km) for OM5. Parameter values from ingham_3cm_02_0918.pdf.
- 2. P_{mpn} calculated with the Ogawa-Agrawal model using Q = 3.41.

TDECQ Filter Bandwidth

- TDECQ reference filter bandwidth calculated by the method described in Ref. 1.
- The TDECQ reference filter -3dBe bandwidth decreases by a negligible amount when the maximum RMS spectral width is changed from 0.60 to 0.65 nm for the 900 918 nm channel.

The reference filter bandwidth of 9.0 GHz noted in Section 200.8.5 of Draft 1.0 can be used without any change.

λ (nm)	Max U _w (nm)	TDECQ Filter –3dBe BW (GHz)				
		OM3 70m	OM4 100m	OM5 150m		
918	0.60	9.05	9.08	9.01		
918	0.65	9.04	9.05	8.96		

Calculations by Jonathan Ingham.

Summary

- Suggest maximum RMS spectral width of 0.65 nm for the 900 918 nm channel.
- No change to the TDECQ reference response filter -3dBe bandwidth of 9 GHz.

Appendix

Ogawa-Agrawal Model

MPN Penalty from chromatic dispersion of fiber

$$P_{mpn} = -5 \log_{10} (1 - Q^2 \sigma_{mpn}^2)$$

$$\sigma_{mpn} = \frac{k}{\sqrt{2}} (1 - e^{-\beta^2})$$

$$\beta = \pi B L (D U_W)$$

B bit rate

D fiber chromatic dispersion

L fiber length

U_W RMS spectral width