

Ethernet PON (EPON) Protocol

By Edward Beili

<ebeili@onepathnet.com>

12 March 2001

Outline

- FTTx Services
- PON Network
- Point to Multipoint EPON Protocol
- EPONP building blocks
- Ranging
- Bandwidth Allocation
- PON Network Discovery
- Conclusion

FTTx services

Data

- Speed: 100/1000Mbps; Symmetric/Asymmetric
- QoS: Latency, Min/Max Rate
- Security
- Video
 - Analog/Digital streaming
- Voice
 - Low jitter & latency
 - Constant delay
 - Business vs. Residential (Life-line)

Passive Optical Network (PON)

PON Challenge

- Only the OLT is able to detect collisions
- Upstream channel separation methods:
 - TDMA
 - WDM
 - RF sub-carrier
 - Phase etc.
- TDMA issues:
 - Burst-mode Transceiver
 - Downstream traffic isolation (privacy)
 - Frame Segmentation to achieve small latency

TDMA PON Protocols

• FSAN ATM-PON – ITU-T G.983

- + Well defined, Field tried, Industry Standard
 - Accepted by major ILECs: BT, FT, NTT, BellSouth, GTE, SBC, QUEST
 - Supporting Vendors: Alcatel, Lucent, Terawave, QuantumBridge, Nortel...
- + Inherent 8Khz clock, QoS, Bandwidth allocation
- Expensive & Complicated (Intermediate ATM layer)
- Off-the-shelf components are scarce
- Ethernet PON
 - + Native IP
 - + Simple & Cheap off-the-shelf components
 - Non-standard technology
 - Complicated Telephony, QoS, Bandwidth allocation

EPON – The need for standard

Goals:

- Multi-vendor interoperability between OLT & ONU
- Standard solutions acceptance by service providers
- Cost reduction due to availability of standard components (larger volumes, broader deployment)
- More bandwidth to the end user for less \$\$

Ethernet PON (EPON) Protocol

- Using standard Ethernet frames
- OLT "broadcasts" Ethernet Frames to its ONUs
- Each ONU transmits in turn using grants issued by the OLT
- OLT regulates the amount of up-stream B/W given to each ONU by controlling the window size
- EPONP control frames are exchanged in-band
- Ranging is used to minimize inter-window gaps

EPON transport – Requirements

- Reliable & Secure transport
- Voice requirements:
 - Constant delay
 - Low latency
 - Low jitter
 - Life-line
- Bandwidth Allocation (Static/Dynamic)

EPON transport – Main functions

- Transmission grants
- ONU discovery/ID assignment
- Periodic sanity check (who is alive)
- Bandwidth allocation
- Security
- Error handling

EPONP - Overview

- 100/1000BaseFX Phy is used at both ends
- Full duplex, 100/1000Mbps statically configured
- Flow-control (back-pressure) is turned off at both ends
- Frames are not segmented
- Short (64 byte) control frames (grants and messages) are periodically exchanged between LC and ONUs

EPONP – Overview (2)

• Downstream

- Ethernet traffic is broadcasted from OLT to all of its ONUs
- OLT periodically sends a Start message containing grants for 1..N full cycles to its subtending ONUs
- Each grant contains:
 - Window_Size and Window_Offset per ONU
 - Cycle_Size
 - Number_of_Cycles
- Upstream
 - Each ONU buffers the upstream LAN traffic and sends it to the OLT when its window is open.
 - Upstream B/W is controlled by the window size per ONU

EPONP – Parameters

EPONP - Parameter Limitations

EXAMPLE (100Mbps symmetric, 16 ONUs, no segmentation):

- (voice_frame + ctrl_frame + max_frame) <= Window_Size <= max Cycle_Size/16
- 2.5ms (16 x min Window_Size) <= Cycle_Size
 <= 20ms (max (max latency, max
 Voice_Delay)
- 0.96μs (IFG) <= IWG <= 4μs

EPONP – Ranging

- Ranging procedure to minimize the guard time, using echo messages sent from OLT to ONUs:
 - OLT measures round trip delay for each ONU
 - OLT notifies each ONU of equalization delay: T_e
 - ONU adjusts transmission phase to T_e
- Adjust the delay periodically to compensate for temperature changes, component aging etc.

Bandwidth Allocation (BA)

- Upstream
 - Controlled by the OLT protocol state machine
 - Window size based equal delay
 - Window rate based variable delay
- Downstream
 - Rate limiting in the OLT or ONU

BA – Upstream

Upstream Static BA (window size based)

ONU discovery & ID assignment

- Static assignment
 - E.g. manual provisioning during ONU installation
- Auto-discovery
 - Binary Tree
 - Hashing (MAC) + Mask
 - Raffle

. . .

. . .

Conclusion

- Topics to work on:
 - Building blocks / Parameters
 - Ranging
 - BA
 - PON discovery

Acronyms

• CO

- **Central Office**
- FTTB/C/Cab/H Fiber-To-The-Business/Curb/Cabinet/Home
- FSAN
- OLT
- ONT
- ONU
- PON
- POTS

- Full-Service Access Network
- Optical Line Terminal
 - Optical Network Terminator
 - Optical Network Unit
 - Passive Optical Network
 - Plain Old Telephone Service

References

- ITU-T G.983.1, "High Speed optical access systems based on Passive Optical Network (PON) techniques"
- ITU-T G.983.2, "The ONT Management and Control Interface Specification"
- ITU-T G.983.3, "A broadband optical access system with increased service capability by wavelength allocation"
- ITU-T G.959.1, "Optical transport network physical layer interfaces".