

EPON Technical Considerations

Frank Effenberger

1

- Specifications of Outside Plant
- Interoperable Power Budgets
- Range Measurement and Compensation
- Anonymous Join and Security
- Upstream Traffic Control

Specifications of Outside Plant

- OSP specifications restrict Network Operators
 - Potentially large impact on their Capital and Operations
 - These rules must be stable and evolvable
 - At minimum, Operators want an interoperable OSP
- I mportant parameters include
 - Minimum and Maximum Loss
 - Maximum Dynamic Loss
 - Maximum Reflectivity
 - Maximum Split Ratio (number of end stations)

Interoperable Power Budgets

- Specification of OSP losses is not enough to insure interoperability between vendors
 - Vendor A: Bright Tx, Insensitive Rx
 - Vendor B: Dim Tx, Sensitive Rx
 - A into B causes overload, B into A causes errors
- Ranges must be defined for both Tx and Rx
 - Min and max power output for Tx
 - Sensitivity and Overload for Rx
- These ranges are related to (but not dictated by) the OSP specifications

- Access distances do not permit normal CSMA-CD
 - PON is a star, not a bus
 - Round trip time is ~0.1 ms
- Media Access Control methods
 - Synchronous Guard time
 - Asynchronous Token-passing
 - Range and Compensate
 - Range and Manage

Anonymous Join and Security

- End stations should be plug and play
 - MAC must have capability of picking up new end stations with unknown MAC addresses as they are installed
- Collision correction algorithm needed
 - Exponential back-off
 - Address mask-off
 - Photon ranging
- Desirable security features
 - Because of plug and play, MAC must provide some defense against impostor attacks
 - Downstream traffic is broadcast to all stations, and requires some level of cryptographic protection

Upstream Traffic Control

- Downstream traffic is managed in ordinary way
 - All flows pass through the central station
 - Typical queuing and scheduling mechanisms work
- Upstream traffic has a unique characteristic
 - Incoming flows are queued at the end stations
 - Central station needs information on the amount of traffic waiting
- Following points must be considered
 - What kind of traffic management is desired?
 - How many flows, paths, classes are needed?
 - Is traffic described as bytes, slots, frames?
 - What does the word 'fair' mean?

7