Optical Considerations for the First Mile

IEEE 802.3 Ethernet in the First Mile (EFM) Study Group March 13-14, 2001 Gerry Pesavento Tel 925-245-7647 Email gerry.pesavento@alloptic.com

Optical Ethernet Outdoors

Objective: Study Environmental Requirements for Ethernet in the First Mile

TELCORDIA ITU-T SG 6 (Outside Plant) ITU-T SG 15 (Optical Access) ANSI IEC/FCC/UL/ETSI/CSA

ITU-T examples : G.652, G.671, G.957, G.983, G.959, etc...

Telcordia examples :

GR-63	NEBS
GR-326	Singlemode Optical Fiber Connectors
GR-487	Electronic equipment and cabinets
GR-765	Optical splices and splicing systems
GR-909	Fiber in the Loop Systems
GR-910	Fiber Optic Attenuators
GR-950	Optical Network Units
GR-1221	Passive optical components
GR-1380	Fusion Splice protectors
GR-2883	Fiber Optic Filters

POWERING ISSUES

- Network Feed +/- 130 VDC
- CATV Loop 90 VAC
- Local Utility 90-240 VAC
- Optional Battery Backup

FTTC Switch !?

OUTSIDE PLANT REQUIREMENTS

Damp Heat 85C, 85% RH for 500 Hrs Temperature -40 to +85 C Water and dust sealed

Wavelength Plan

• Single fiber - 1490/1310 nm

- ITU-T G.983.WDM
- Upstream 1260-1360 nm (1310 nm nominal)
- Downstream 1480-1500 nm (1490 nm nominal)
- DWDM Enhancement Band 1540-1565 nm (ITU G.959.1, G.692)
- Single fiber 1310/1310 nm
 - 1310 nm Upstream and Downstream
 - Upgradeable to CWDM (1470, 1490, 1510, 1530, 1550, 1570, 1590, 1610)
 - Upgradeable to ITU DWDM
 - Concern: Additional 3.5 x 2 = 7 dB loss, and requires low back reflection connections
- Two fiber 1310/1310 nm
 - 1310 nm Upstream and Downstream, no WDM
 - Concern: 2x the Cable plant (splices, connectors, etc).

DWDM

Enhanced λs

1310

Base λs

1490

Why a 1.25 Gbps GBIC is not always suitable for the First Mile

- Distances up to 20 km (ITU-T G.983 specification)
- Single fiber solutions often required by local network operators
- 1550 nm analog video overlay requirement more TVs than PCs
- 15xx CWDM or DWDM Channel requirements for FTTB
- FTTH networks using integrated optics
- Isolation between wavelengths should be >30 dB (>40 dB for analog video)

Fiber, Connectors, Couplers

FIBER AND CONNECTOR ISSUES

- Single mode fiber (SMF) only
- Single fiber and dual fiber solutions
- Connector standard: SC, LC with UPC/APC
- Cable: Trunk Feeder, Distribution, Drop
- Standard SMF-28 OK, Wideband fibers OK too

COUPLERS (EPON)

- Dual window 1310nm & 1550 nm center wavelength
- Wideband +/- 60nm pass band
- Low loss 3.5 dB max per 1:2 junction
- Reliability meets Telcordia standard
- Two types: Fusion, Planar Waveguide

Fiber and connectors are not easy to deal with, keep them away from consumers

Optical Transceivers, WDMs

OPTICAL TRANSCEIVERS

- Gigabit Ethernet EFM 20 Km reach
- Single and Dual Fiber Solutions

WDMs

- WDM upgrade path needs to be considered
- Thin Film Filters, Arrayed Waveguide, Bragg Grating
- CWDM vs. DWDM overlay for First Mile a good debate
- An EFM solution will need to interface with Metro DWDM

Upstream EPON Transmitter and Receiver issues

UPSTREAM TRANSMITTER (EPON)

- Background optical noise light leakage from idle ONU
- Laser turn on and turn off time (minimize guard band between timeslots)
- Burst mode feedback control of laser diode's temperature drift

UPSTREAM RECEIVER (EPON)

- Optical power step change between packet trains (caused by the difference of splitting point, fiber distance and laser power)
- Clock recovery
- Guard band margin considerations
 - At 1.25 Gb/s one bit is about 6" long in fiber, 1uS = 200m
 - In FTTH application, customer may move ONU and add fiber length

Optical Line Rate and Power Budget

EFM OPTICAL LINE RATE

• 1.25 Gbps – 1 Gigabit Ethernet

OPTICAL POWER BUDGET

- 20km service range $\rightarrow \sim$ 8 dB loss in fiber at 1310 nm
- EPON up to 32 splitting → ~ 17.5 dB loss in coupler, Splitting ratio is tradeoffs between bandwidth and number of ONU. Power budget is tradeoffs between splitting ratio and distance
- Connector, splice, CWDM loss ~ 4 dB
- Additional system margin required: 3 dB margin + 3 dB aging
- Bit Error Rate 10⁻¹⁰ (ITU), 10⁻¹²

Conclusion

- EFM should study environmental requirements; resources for published specs include Telcordia, ITU-T, ANSI, etc.
- A base wavelength plan is a critical decision: Single fiber 1550/1310
 Single fiber 1490/1310 – ITU-T; chosen by several incumbents Single fiber 1310/1310
 Dual fiber 1310/1310
- An overlay wavelength plan is also critical. It is not clear as to whether CWDM or DWDM will be used in the first mile. See ITU G.983.WDM
- Ethernet PONs optimize infrastructure, but require burst mode transceivers.
- Other optical issues include security, fiber plant integrity, fiber diagnostics and plant management, and optical safety and protection.
- OBJECTIVES SUMMARY
 - Study environmental issues
 - Optical requirements for PTP and PTMP network need to be defined
 - Let's hear from more local network operators

