HDLC framing of Ethernet packet

Zion Shohet

802.3ah May 2002
Abstract

• HDLC framing, used in QAM VDSL, is analyzed here in terms of error packet acceptance, and overhead.

• We show here that:
 – The probability of Erroneous packet received by upper layer is in the order of 10^{-36} for QAM-256.
 – HDLC overhead is reasonable and provides adequate ability for packet length forecasting.
HDLC Background

- The VDSL PHY uses HDLC framing for the packet transmitted/received to/from the higher layer.
- HDLC Frame includes:
 - Opening Flag 7E hex
 - Address field FF hex
 - Control field 03 hex
 - Information field Original Ethernet Packet, 1522 octets max.
 - FCS CRC16 (2 octets)
 - Closing Flag 7E hex
- To avoid Opening/Closing Flag within the Information field, Byte-stuffing is used:
 - 7E hex \(\Rightarrow\) 7D 5E hex
 - 7D hex \(\Rightarrow\) 7D 5D hex
Calculation of Probability of Erroneous Packet acceptance

The probability we look for depends on the following factors:

- P1: Pre-decoder error probability
- P2: Post-decoder error probability
- P3: Erroneous generation of a HDLC Flag probability
- P4: HDLC & Ethernet CRC un-detection probability

The resulting probability for false acceptance of erroneous Ethernet packet is:

\[P_{\text{total}} = P_1 P_2 P_3 P_4 \]
P1- Pre-decoding error probability

The pre-decoding error probability is given by:

\[P_{in,rs} = P_{SE} \cdot \alpha \cdot \beta \]

Where:

\[P_{SE} = 10^{-4} \]

is a conservative symbol-error probability of VDSL line

\[\alpha \]

- Is the ratio of Byte rate to Symbol rate, depending on the constellation.

\[\beta \]

- Increases the probability due to Symbol splitting into 2 Bytes, in QAM-8, 32, 64, 128. In QAM-4, 16, 256 a Symbol is never split over symbol boundary. We increase the Byte error probability according to the percentage of cases of Symbol split.
P2: post-decoder error probability

P2 is given by (see ref. 1 and 2):

\[
P_{\text{out,rs}} = \frac{1}{N} \sum_{i=N_c+1}^{N} i \cdot \binom{N}{i} \cdot P_{\text{in,rs}}^i \cdot (1 - P_{\text{in,rs}})^{N-i}
\]

Where:

\(P_{\text{out,rs}} \) is the post-decoding Byte error probability of the Reed-Solomon

\(P_{\text{in,rs}} \) is the pre-decoding Byte error probability of the Reed-Solomon.

\(N = 255 \) and \(N_c = 8 \) For (255,239) Reed-Solomon
The probability of at least one Byte-error in a frame of length F, at the output of the RS-decoder is:

$$P_1 = 1 - (1 - P_{\text{out,rs}})^F \approx F \cdot P_{\text{out,rs}}$$

Where:

$$F = 1536 \text{ Bytes, as a max. limit.}$$
P3 and P4

• **P3** - The probability of an erroneous Byte to be an HDLC flag, 7E hex, is:

\[P_3 = 2^{-8} \]

• **P4** - HDLC frame contains 16-bit CRC. The Ethernet packet contains 32-bit CRC:

\[P_4 = 2^{-16} \cdot 2^{-32} \]
Using the above process and parameters yields the following:

<table>
<thead>
<tr>
<th>Constellation</th>
<th>P_{total}</th>
</tr>
</thead>
<tbody>
<tr>
<td>QAM-4</td>
<td>$1.97 \cdot 10^{-30}$</td>
</tr>
<tr>
<td>QAM-8</td>
<td>$3.87 \cdot 10^{-31}$</td>
</tr>
<tr>
<td>QAM-16</td>
<td>$4.02 \cdot 10^{-33}$</td>
</tr>
<tr>
<td>QAM-32</td>
<td>$2.05 \cdot 10^{-32}$</td>
</tr>
<tr>
<td>QAM-64</td>
<td>$4.02 \cdot 10^{-33}$</td>
</tr>
<tr>
<td>QAM-128</td>
<td>$4.02 \cdot 10^{-33}$</td>
</tr>
<tr>
<td>QAM-256</td>
<td>$8.02 \cdot 10^{-36}$</td>
</tr>
</tbody>
</table>
Error calculation: Summary

- For QAM-256 @ Symbol-error rate of 10^{-4}, the probability is $8.02 \cdot 10^{-36}$. For QAM-4 we get $1.97 \cdot 10^{-30}$.

- For 10M EoVDSL, this is about 10^{24} years of endless long Ethernet packet transmission. (For QAM-4 we get 10^{18} years).

- For 1Gig Ethernet to achieve such performance, BER better than 10^{-19} is needed (see ref 3).

- For 10Gig Ethernet to achieve such performance, BER better than 10^{-12} is needed (see ref 3).

- Thus, the probability of an erroneous packet being transferred to upper layer, is very low, and well compared to other protocols.
HDLC overhead compared to 64b/66b

- HDLC Frame includes:
 - Opening Flag 7E hex
 - Address field FF hex
 - Control field 03 hex
 - Information field Original Ethernet Packet, 1522 octets max.
 - FCS CRC16 (2 octets)
 - Closing Flag 7E hex

- To avoid an Opening/Closing Flag within the Information field, HDLC uses Byte-Stuffing:
 - 7E hex ⇒ 7D 5E hex
 - 7D hex ⇒ 7D 5D hex

- Overhead = 6 Bytes (fixed) + Byte-stuffing (statistical)
HDLC components

- The fixed overhead is 6 Bytes and ranges from 9.375% for shortest packet, to 0.3942% for longest packet.

- Byte Stuffing: each appearance of 7E or 7D adds one Byte overhead to the packet.

- The probability for M appearances of 7E or 7D in a packet of length L:

\[P = \sum_{i=1}^{M} \binom{L}{i} \cdot P_1^i \cdot (1 - P_1)^{L-i} \]

Where: \(P_1 = 2 \cdot 2^{-8} \)
HDLC overhead vs. probability (fixed + statistical)

HDLC overhead (octets) vs. probability, for various packet lengths

overhead, octets

probability, %

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

5 7 9 11 13 15 17 19 21 23 25 27 29

64 128 256 512 1522
HDLC overhead probability vs. % of packet length

HDLC overhead probability

Overhead, % of packet length

Probability, %

0 2 4 6 8 10 12 14 16 18 20 22 24

0 10 20 30 40 50 60 70

0 512 256 128 64

1522 0
64b/66b Framing overview

- In 10Gig Ethernet, the 64b/44b framing is used to encapsulate the packet.

In 64b/66b:
- Each frame starts with a SOP flag, and ends with an EOP flag.
- Each frame is divided into 8-octet codewords.
- There are: Data codeword, Mixed Data/Control codeword.
- Data codeword has “01” sync preamble.
- Mixed Data/Control codewords have
 - “10” sync preamble
 - Data octets
 - Control octets, as needed to fill a 64-bit codeword.
64b/66b Codeword structure

- S=SOP, T=EOP, Z=Control, D=Data
- Two possible SOP: - S D D D, D D D D
 - Z Z Z Z, S D D D
- Pure data: - D D D D, D D D D
- Pure control: - Z Z Z Z, Z Z Z Z
 - D D D T, Z Z Z Z - D D D D, D D D T
Taking all this together yields:

\[\Delta_L = \left\lceil \frac{L + 2}{8} \right\rceil \cdot (8 + \frac{1}{4}) - L \]

Where:

- \(\Delta_L \) is the overhead, in octets, best-case. For worst-case: need to add 4 octets, due to SOP alignment.

- \(L \) is the packet length, in octets.
64b/66b Overhead in octets, Periodic behavior

The periodic overhead of 64b66b framing, in octets
Min. & Max. Overhead of 64b66b framing, in %

Deviation of 64b/66b overhead, % of packet length

% of packet length

packet length
Average HDLC overhead vs. 64b66b overhead

HDLC vs. 64b66b overhead

% of packet length

packet length

HDLC
64b66b
3σ of HDLC overhead vs. 64b66b overhead

![Graph showing HDLC vs 64b66b overhead comparison.](graph.png)
Summary

- HDLC overhead is influenced by:
 - Control (6 octets, fixed)
 - Packet length (statistical Stuffing)
- 64b66b overhead is influenced by:
 - SOP & EOP (2 octets, fixed)
 - SOP alignment (0 or 4 octets, statistical)
 - Packet length modulu 8 (periodic behavior, up to 7 octets)
 - Preamble (0.25 octet per 8 octets of the new frame)

- Both framing schemes have fixed & statistical behavior of the overhead.
- Prediction of packet length is problematic in either case.
- The average HDLC overhead is lower than the 64b/66b overhead.
References

Pre-decoding error probability

The following table summarizes the above:

<table>
<thead>
<tr>
<th>Constellation</th>
<th>Number of splits</th>
<th>β</th>
<th>α</th>
<th>$P_{\text{out,rs}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>QAM-4</td>
<td>0</td>
<td>1.0</td>
<td>4</td>
<td>$9.23 \cdot 10^{-17}$</td>
</tr>
<tr>
<td>QAM-8</td>
<td>2 out of 8</td>
<td>1.25</td>
<td>2.667</td>
<td>$1.82 \cdot 10^{-17}$</td>
</tr>
<tr>
<td>QAM-16</td>
<td>0</td>
<td>1.0</td>
<td>2</td>
<td>$1.88 \cdot 10^{-19}$</td>
</tr>
<tr>
<td>QAM-32</td>
<td>4 out of 8</td>
<td>1.5</td>
<td>1.6</td>
<td>$9.64 \cdot 10^{-19}$</td>
</tr>
<tr>
<td>QAM-64</td>
<td>2 out of 4</td>
<td>1.5</td>
<td>1.333</td>
<td>$1.88 \cdot 10^{-19}$</td>
</tr>
<tr>
<td>QAM-128</td>
<td>6 out of 8</td>
<td>1.75</td>
<td>1.143</td>
<td>$1.88 \cdot 10^{-19}$</td>
</tr>
<tr>
<td>QAM-256</td>
<td>0</td>
<td>1.0</td>
<td>1</td>
<td>$3.76 \cdot 10^{-22}$</td>
</tr>
</tbody>
</table>