Using BroadSAFE™ Technology

07/18/05
Layers of a Security System

- Security System
- Data Encryption
- Key Negotiation
- Authentication

Identity Root Key

Once root is compromised, all subsequent layers of security are compromised.

All security systems start with root level key (Cryptographic Identity)
Deployment of Technology

• Stateless Key Management Client (μHSM)
 – Standalone for “strong device authentication”
 – Network connected devices
 – Key Management flexibility with low system cost impact
 – Client / Server Key Management Model

• Trusted Platform Module (TPM)
 – Standalone key management capability (peer to peer)
 – Standards based solution
 – Larger silicon footprint
BroadSAFE Security

• BroadSAFE Hardware Security Technology
 – Tamper resistant hardware for key storage
 – Standard CMOS processing provides integration capability
 – Private key generation internal to device (internal True Random Number Generator)

• Deployed Now
 – Existing switching products
 – Existing networking VoIP Devices
 – Interoperates with TPM architecture (v1.1b and v1.2)

• BroadSAFE Flexibility
 – Interoperable with security standards (IPsec, SSL, TLS, SRTP, SIP, 802.1x, etc.)
 – Open / Standards Based Key Management Interface
 – Capability to provide custom based solutions
Unique DSA Key Pair

• DSA Key Generation
 – Simple key generation based on internal generated random number
 – 160 bit key is random number processed per FIPS186-2
 – Unique per device
 – Key generation time in uSec versus several minutes for RSA of equivalent strength
 – Modulus and Generator values can be well known (stored in ROM versus NVM)
 – NVM requirements ONLY 160 bits for DSA Key

• DSA Key Pair Creation
 – Done during device manufacture
 • No programming required at OEM or end user
 – Certificate can be issued to travel with device
 • Public value can be stored outside the security boundary
 – Private key is only used to sign data within hardware security boundary
 – Private key is never exposed
Manufacturing Flow

DSA Private key ($K_{DI-PRIV}$) generated in protected security hardware (never exposed, unknown to manufacture)

Blank Packaged → Device Programming → Programmed Device

Protected Environment

Device Registration → Registered Device

Warranty Server (WS)

Certificate Database

D_{CFG}

$D_{AUTH} = HMAC-SHA1(K_{CR-PUB})$

Warranty

Server

(WS)

{K_{DI-PUB}K_{W-PRIV}}

K_{DS-PUB} signed by manufacturer to generate certificate

K_{DS-PRIV} generated in protected security hardware (never exposed, unknown to manufacture)
Simple Strong Authentication

Device

µHSM

System NVM

Request Certificate

Submit Device Certificate

µHSM Public Key (K_{DI-PUB})

Signed by Manufacturer
Private key (K_{W-PRIV})

Authenticator verifies signature using the manufacturer public key (K_{W-PUB}). Establishes that the public key of this module K_{DI-PUB} is certified by the manufacturer.

Authenticator generates a challenge (unique random 160 bit number).

Authenticator verifies signed challenge using certified public key (K_{DI-PUB}).

Establishes that this particular device holds the private key K_{DI-PRIV} that corresponds to the certified public key K_{DI-PUB}.

Authenticating the manufacturer of the module.

Communication Path (non-secure)

µHSM signs challenge using private identity key (K_{DI-PRIV})

Send random challenge

Send signed challenge

NOTE: Every device contains a unique K_{DI-PRIV} and corresponding K_{DI-PUB}
BroadSAFE™ Key Protection

• Keys must be protected in Hardware
 – Key material is the target of attack
 – Aggregation of key material increases the value / risk of attack
 – Key management aggregates key material
 • Key generation
 • Key backup
 • Key policy
 – Key value goes up over time
 – Software almost impossible to make secure across all platforms
 • (Microsoft, Linux, IOS, etc.)

• Hardware key protection for about the same cost as software
 – BroadSAFE Automated Hardware Key Management System
 – Integration of strong hardware key protection into client devices
 – Embedded Hardware Technology
Key Management

• Cryptography necessitates key management
 – Handling of cryptographic keys in your system
 – Have you locked the door and left the key under the mat?

• Key Handling
 – Generation of keys
 – Set capabilities and security limits of keys (policy)
 – Implement key backup and recovery
 – Prepare keys for storage
 – Key revocation and destruction
 – Multiple layers of security

• Authorized Key Usage
 – Smart-card K of N access control
 – Key linked to particular user / application / etc.

• Secure Audit Logs
 – Tracking key usage to provide audit trail
 – Liability protection

• Certified Security
 – FIPS140-2 Level 3 Security
 – Keys are never exposed outside of hardware in clear-text
Key Delivery

• Strong device authentication
 – Established as part of generating a session with authenticator

• Key Delivery
 – Ephemeral DH session can be used to deliver device keys
 – Secure tunnel for key delivery to μHSM

• Security Protocol Agnostic
 – Any security protocol that uses Public Key Technology
 – Protection of device, system, user identity
 • Private keys of certificates encrypted so only unique μHSM can use them
Security Applications

- Asymmetric Public Key Algorithms (DSA, RSA, DH)
- Key Exchange Protocols (IKE, SSL/TLS Handshake)
- Symmetric Algorithm (3DES, AES, HMAC-SHA1)

Key Management Interface (strong authentication)
BroadSAFE System

• **Strong Cryptographic Authentication**
 - “who you are” versus “who you say you are”
 - Unique embedded “private key identity” for each device

• **Hardware Protection of Certificates and Keys**
 - Identity is never compromised
 - Key material never leaves the tamper resistant hardware in clear text
 - FIPS140-2 Level 2 and Level 3 Solutions Available
 - Basis for any standard cryptographic security system (IPsec, SSL, TLS, etc.)

• **Secure Management**
 - Encrypted and authenticated Management traffic
 - Automated policy and key updates
 - Upgrade functions cryptographically in hardware after the device has been deployed