

 Page 1

YANG Type Pattern Proposals for 1

P802.1ASdn/D2.2 2

Author: Johannes Specht 3

Affiliation: Self 4

Date: July 16, 2024 5

About this Document 6

This document is an individual contribution in support of the comment resolution of P802.1ASdn/D2.2. It 7

contains proposals for replacing the YANG patterns of YANG data type definitions scaled-ns, uscaled-ns 8

and float64, and adjusting the associated YANG descriptions and references accordingly. 9

The proposals goe back to the rogue comment on the right column on page 5 of 10

https://ieee802.org/1/files/private/asdn-drafts/d2/802-1ASdn-d2-0-dis-v01.pdf, which was rejected due 11

to its unspecific nature. 12

This document is very specific in the sense that it provides YANG code that can be used as copy&paste 13

replacements. Additional notes and explanations are provided for each replacement, providing additional 14

background information and remarks to the ballot resolution group. 15

Contents 16

About this Document .. 1 17

Specific Proposals.. 2 18

scaled-ns Type Definition .. 2 19

Current YANG Code ... 2 20

Proposed new YANG Code .. 2 21

Notes and Explanations .. 2 22

uscaled-ns Type Definition .. 3 23

Current YANG Code ... 3 24

Proposed new YANG Code .. 3 25

Notes and Explanations .. 3 26

float64 Type Definition ... 4 27

Current YANG Code ... 4 28

Proposed new YANG Code .. 4 29

Notes and Explanations .. 5 30

 31

https://ieee802.org/1/files/private/asdn-drafts/d2/802-1ASdn-d2-0-dis-v01.pdf

 Page 2

Specific Proposals 32

scaled-ns Type Definition 33

Current YANG Code 34
typedef scaled-ns { 35

 type string { 36

 pattern "[0-9A-F]{2}(-[0-9A-F]{2}){11}"; 37

 } 38

 description 39

 "The IEEE Std 802.1AS ScaledNs type represents signed values of 40

 time and time interval in units of 2^16 ns, as a signed 96-bit 41

 integer. Each of the 12 octets is represented as a pair of 42

 hexadecimal characters, using uppercase for a letter. Octets are 43

 separated by a dash character. The most significant octet is first."; 44

 reference 45

 "6.4.3.1 of IEEE Std 802.1AS"; 46

} 47

Proposed new YANG Code 48
typedef scaled-ns { 49

 type string { 50

 pattern " 0x[0-9A-F]{4}([0-9A-F]{4}){5}"; 51

 } 52

 description 53

 "The IEEE Std 802.1AS ScaledNs type represents signed values of 54

 time and time interval in units of 2^16 ns, as a signed 96-bit 55

 integer. The canonical and lexical representations are as 56

 specified in 6.4.3.1 of IEEE Std 802.1AS (i.e., five upper case 57

 hexadecimal words with 4 digits each and the words separated by 58

 single whitespace characters.”; 59

 reference 60

 "6.4.3.1 of IEEE Std 802.1AS"; 61

} 62

Notes and Explanations 63

The original proposal from the rogue comment described two different patterns: 64

- A first pattern aligned with the notation illustrated in 6.4.3.1 of IEEE Std 802.1AS 65

- A second pattern aligned with the notation of Integers in YANG (9.2.1. of RFC 7950). 66

The proposed new YANG code limits on the former pattern as a result of discussion with 802.1AS experts. 67

 Page 3

uscaled-ns Type Definition 68

Current YANG Code 69
typedef uscaled-ns { 70

 type string { 71

 pattern "[0-9A-F]{2}(-[0-9A-F]{2}){11}"; 72

 } 73

 description 74

 "The IEEE Std 802.1AS UScaledNs type represents unsigned values of 75

 time and time interval in units of 2^16 ns, as an unsigned 96-bit 76

 integer. Each of the 12 octets is represented as a pair of 77

 hexadecimal characters, using uppercase for a letter. Octets are 78

 separated by a dash character. The most significant octet is first"; 79

 reference 80

 "6.4.3.2 of IEEE Std 802.1AS"; 81

} 82

Proposed new YANG Code 83
typedef uscaled-ns { 84

 type string { 85

 pattern " 0x[0-9A-F]{4}([0-9A-F]{4}){5}"; 86

 } 87

 description 88

 "The IEEE Std 802.1AS UScaledNs type represents unsigned values of 89

 time and time interval in units of 2^16 ns, as an unsigned 96-bit 90

 integer. The canonical and lexical representations are as 91

 specified in 6.4.3.2 of IEEE Std 802.1AS (i.e., five upper case 92

 hexadecimal words with 4 digits each and the words separated by 93

 single whitespace characters."; 94

 reference 95

 "6.4.3.2 of IEEE Std 802.1AS"; 96

} 97

Notes and Explanations 98

The notes and explanations for scaled-ns apply equally for uscaled-ns. 99

 100

 Page 4

float64 Type Definition 101

Current YANG Code 102
typedef float64 { 103

 type string { 104

 pattern "[0-9A-F]{2}(-[0-9A-F]{2}){7}"; 105

 } 106

 description 107

 "The IEEE Std 802.1AS Float64 type represents IEEE Std 754 binary64. Each of the 8 octets is 108

 represented as a pair of hexadecimal characters, using uppercase for a letter. Octets are 109

 separated by a dash character. The most significant octet is first."; 110

 reference 111

 "6.4.2 of IEEE Std 802.1AS"; 112

} 113

Proposed new YANG Code 114
typedef float64 { 115

 type string { 116

 pattern "([+-]?0[Xx]([0-9a-fA-F]*.[0-9a-fA-F]+|[0-9a-fA-F]+.|[0-9a-fA-F]+)[Pp][+-]?[0-9]+)"+ 117

 "|([+-]?([0-9]*.[0-9]+|[0-9]+.|[0-9]+)[Ee][+-]?[0-9]+)"; 118

 } 119

 description 120

 "The IEEE Std 802.1AS Float64 type represents IEEE Std 754 binary64. The lexical 121

 representation is either that of external hexadecimal-significand character sequences 122

 representing finite numbers as specified in 5.12.3 of IEEE Std 754-2019, or that of 123

 ISO/IEC 9899:1999 (C99) for decimal floating-point numbers with exponent, without 124

 floating-suffix and limited to finite representable numbers (e.g., Inf. and NaN excluded). 125

 126

 Canonical form: 127

a) The canonical form of a positive number does not include the sign ‘+’, and does not 128
include the sign ‘+’ for positive exponents. 129

 b) The hexadecimal/decimal point is required. 130

 c) Lexically representable numbers that cannot be represented by binary64 shall be rounded 131
 by a server to the closest finite number representable by binary64. 132

 d) When a server sends XML-encoded data, only normalized values and are sent in the format 133
 according to 5.12.3 of IEEE Std 754-2019 with at least one fractional digit and one 134
 exponent digit (i.e., pattern ‘-?0[Xx]1.[0-9a-fA-F]+[pP]-?[0-9]+’). 135

 e) XPath expression evaluations are done using the canonical form specified in items a) 136
 through d)."; 137

 reference 138

 "6.4.2 of IEEE Std 802.1AS 139

 Page 5

 5.12.3 of IEEE Std 754-2019 140

 6.4.4.2 of ISO/IEC 9899:1999"; 141

} 142

Notes and Explanations 143

The current YANG code is effectively a byte-wise memory dump of binary64 values. 144

This proposed new YANG code is intended to address several issues with this. This proposal is intended to 145

address various usability concerns of memory-dumps that were raised in other contexts in IEEE 802.1, and 146

likewise addresses potential issues with non-representable/non-finite numbers (e.g., NaN). 147

It is to be discussed whether a hexadecimal representation would be sufficient (i.e., omitting decimal 148

entirely, which means all red text would disappear). 149

The proposed new YANG code is more aligned with a human readable form. A similar approach is found 150

in “ietf-routing-types.yang” (https://www.netconfcentral.org/modules/ietf-routing-types/2017-12-04) 151

for data type “bandwidth-ieee-float64”. “bandwidth-ieee-float64” limits to hexadecimal, non-negative, 152

normalized, non-fraction numbers. These limits are not implemented in “float64”. Limiting to 153

representable numbers is present in both, “float64” and “bandwidth-ieee-float64”. 154

The proposed pattern does not account for potential values that (even) exceed the range of binary64. 155

However, this should be covered by the definition of the canonical form. A simple (but naive) way for 156

covering this in the pattern would be by liming the number of digits. However, this would only narrow the 157

range limits. Accurate range limitation by pattern would be possible (in theory) by excessive combinatorial 158

expansion of digit-combinations. This was omitted in favor of readability, and because the range limits 159

should be covered, as said. 160

Notes on the canonical form: 161

- The canonical form requirements a) and b) are derived from 9.3.2. of IETF RFC 7950. Note that 162

RFC 7950 does not limit to either upper- or lower- case letters for hexadecimal integer values 163

(9.2.1 and 9.2.2 of RFC 7950). 164

- Item c) covers various cases for config data. 165

- Items d) and e) are derived from 9.1. of RFC 7950, though the normalization is a logical 166

consequence to ease XPath evaluation. 167

https://www.netconfcentral.org/modules/ietf-routing-types/2017-12-04

