

IEEE P802.1DP | SAE AS6675 Overview

IEEE P802.1DP | SAE AS6675 TSN Profile for Aerospace

Overview

Abdul Jabbar GE Research

Objective

- High-level overview of TSN Aerospace profile
- Introduction for new participants
- Key aspects of the profile
- Standardization process/timeline

Motivation for Aerospace Profile

Use Case Perspective

- Static engineered networks
- Relatively small topologies
- Fully centralized configuration
- Specific requirements due to safety applications high integrity, high availability, and fault tolerance
- Unique environment
- Long lifecycle (20yrs min, 50yrs expected)

Aerospace Industry Perspective

- Significant commonality across use cases
- Common TSN solution that meets aerospace network requirements
- Interoperability across devices and vendors
- Industry acceptance and certifiability as a common standard
- Increased vendor base
- Lower "lifecycle" effort

<u>Well defined</u> TSN profile provides an efficient solution for all aerospace use cases

"Goal is to have a highly prescriptive profile tailored for aerospace industry"

Profile Development

TSN Aerospace Profile Development

Reference: IEEE 802.1 TSN Profiles, Janos Farkas <u>https://www.ieee802.org/1/files/public/docs2021/dp-farkas-TSN-profiles-0221-v01.pdf</u>

Use Cases Documented

Commercial/Civil Aircraft

- Aircraft Control Domain Network (ACD) small and large passenger aircraft
- Cabin Network (ACD, AISD, PIESD) large passenger aircraft

Fixed Wing Military Aircraft

- Mission Network (small, combat, large)
- Flight Network (VMS)
- Fiber Channel over TSN (convergence)

Rotary Wing Military Aircraft

- Mission Network
- Flight Network

Unmanned Military Aircraft Network

Satellite

- Platform Network
- Payload Network

12 detailed use cases contributed by OEMs and tier1/2/3 suppliers documenting both network and traffic characteristics

Reference: AEROSPACE TSN USE CASES, TRAFFIC TYPES, AND REQUIRMENTS, SAE AS1-A2 committee https://www.ieee802.org/1/files/public/docs2021/dp-Jabbar-et-al-Aerospace-Use-Cases-0321-v06.pdf

Use Case Summary -Topologies

Use cases inform the profile choices, but do not, in any way, limit the use for any aerospace application

Characteristi c	Current Use		Known/	Use case driving
	Lower Bound	Upper Bound	Future Use	bound
Number of Nodes	5	100	500	Large Passenger Aircraft (ACD)
Physical Topology	Bus (command/response protocol), Point-to-point/ multipoint, Ring (daisy chained), switched star or combination		Hybrid - Ring and Star	N/A
Number of Switch Hops	0	5	15-30	Large Passenger Aircraft (PIESD)
Max Number of Streams per Switch	50	2000	4096	Large Passenger Aircraft (ACD)
Network Redundancy	Two independent networks (A,B). End systems are dual homed to redundant LANs (ARINC664 part 7); Fault- tolerant Ring; None on point-to-point links. Subsystem or full system level redundancy (dual, triple, or quad)		same as current use cases	All fault-tolerant use cases
Redundancy Mode	Bus Failover (Hot Standby), Frame Failover (Hot Active); Hot Active with voting		same as current use	DAL [*] A/B systems
Data Rates	10 Kbps	1 Gbps	100 Gbps	MIL-STD-1553 and Satellites on the low bound. Military MS on the high end.
Media type	Copper: 1394,1553, RS-485/422, ARINC 429/629, Ether- net. Multimode Fiber: Fibre Channel, 100BASE-SX and 1000BASE-SX		Optical fiber for higher data rates	All aircraft

Table 6-2—Summary of Aerospace Use Cases

Use Case Summary – Traffic Types

Use cases inform the profile choices, but do not, in any way, limit the use for any aerospace application

Table 6-4—Summary of Aerospace Traffic Types

Troffic	Current Use (range)		Known/	Use Case Driving	
Characteristic	Left Bound (loosest)	Right Bound (tightest)	Future Use Bound	the Most Restrictive (right) Bound	
Synchronism	Asynchronous	Synchronous	no change	Ultra-low latency and/or jitter (right bound)	
Application synchronized to network?	No	Yes	no change	Ultra-low latency and/or jitter	
Periodicity or Cycle Time	Aperiodic	<1 ms	100 µs	Flight critical controls, sensors, and weapon systems	
Latency Mode Guarantee Value	100 ms	1 ms	100 µs	high criticality asynchronous events	
Tolerance to interference (delay variation/ jitter)	up to latency limit	< 1 µs	no change	fly-by-wire, synchronous sensors	
Tolerance to Loss [*]	3 consecutive frames	zero	no change	Parametric data (left bound), Flight control or weapon release (right bound)	
Payload size	8 bytes	2112 bytes	no change	Sensor data (left bound) Fibre Channel over TSN (right bound)	
Data Criticality	no safety effect	DAL A	no change	Safety critical and flight control	

Conformant Profiles for End Stations and Bridges

Synchronization

Conformant Profiles for End Stations and Bridges

Capabilities

Asynchronous Profiles

- Asynchronous with slower cycle times (> 50 msec)
- Sensitive to latency but not delay variation (jitter)
- Single criticality traffic on a controlled network
- Simple network redundancy
- Common clock/time not required

Synchronization

Synchronous Profiles

- Synchronous with cycle times in the order of 1 msec
- Sensitive to latency and delay variation (jitter)
- Convergence of mixed critical traffic
- Flexible redundancy
- Platform wide clock time distribution

Functions	Profile Specification	Relevant Standards
Time Synchronization	Generalized precision time protocol* Fault tolerance with time integrity*	802.1AS-2020 P802.1ASed
Traffic Shaping	Credit based shaper Time aware Shaper*	802.1Q-2020, 8.6.8 Previously 802.1Qav and 802.Qbv
Redundancy	Frame replication and elimination	802.1CB-2017
Stream Isolation	Stream identification Per-Stream filtering and policing	802.1Q-2020, 8.8.5 Previously 802.1Qci
Configuration	Fully centralized with YANG modeled config data	802.1Q-2020, 46 802.1Qcw, 802.1CBcv
Active Topology Control	Per-stream static forwarding	802.1Q-2020
Management and Monitoring	Required error, fault, and performance metrics	802.1Q-2020

* Only applicable to Synchronous profile

Standardization Timeline

2022 2024 2025 (estimated*) 2021 2023 Update Draft Update Draft IEEE/SAE **IEEE P802.1DP/** Use Cases and Committee Balloting: Balloting: Balloting: IEEE SA Requirements IEEE TG **IEEE WG** Board **SAE AS6675** Development SAE Sub-Comm SAE Committee Draft 3.0 SAE Counsel Approvals Draft 1.0 Draft 2.0 Publishing IEEE 802.1ASed Initial TG Ballot Split from DP New project -**IEEE TG Ballots** WG Ballots Board (Time Integrity) Development (as part of DP) Ased Update draft Approval Draft 3.0 Draft 2.0 Draft 1.0 Publishing **SA Ballots**

* Future timeline is subject to standardization process

Configuration Model

- Fully centralized configuration model
- Engineered network with static topology
- No direct comms between ES/Bridges and CUC/CNC
- Design/Engineering tool generates all input to CUC/CNC
- File based configuration for all end stations and bridges
- Integration and configuration across multiple TSN device vendors for an aerospace vehicle to be driven by YANG modeled configuration data.
- DP drives the interoperability

Simplified coordination of SAE and IEEE balloting process

(ge)

Based on <u>IEEE/SAE joint</u> <u>development guide</u>

Miscellaneous Remarks

- Attention is being paid to the safety critical nature of aerospace and regulatory certification needs
- Scope, direction, and approach are well aligned with the aerospace industry
- Strong participation from all stakeholders
- Dual logo standard with an open development standard enables wide acceptance