The TSN use case for the MIURA microlaunchers

September 18th, 2024

jorge.sanchez@navtiming.safrangroup.com

SAFRAN

01 Motivation. TSN for New Space 04 | TSN for Miura: Traffic classes & Topology

02 The Miura Microlaunchers: Miura 1 & Miura 5

03 | System Design & Architecture 05 | Experimental validation & Results

06 Conclusions & Lessons learned

Motivation. TSN for New Space

TSN for New Space

- Standards-driven designs
- Low-cost, COTS components
- Automotive-grade SoC
- Real-time RTEMS
- FPGA-based TSN design
- Low footprint & resource usage

gPTP (802.1AS)	Reservation (802.1Qcc)	Redundancy
TAS (802.1Qbv)	Preemption (802.1Qbu & Qbr)	(802.1CB)

Early application of TSN in aerospace for microlaunchers
 Development kickstarted before P802.1DP

TSN as a control & communication backbone for Aerospace

TSN is a promising solution for aerospace. It could supersede the traditional alternatives (e.g., fieldbuses) given its determinism, large data rates, and its interoperability.

Criteria	MIL-STD 1553B	CAN (CAN FD)	Space Wire	SpaceFibre	Standard GigaEthernet
Reduced Cost		+			++
Speed	- 1 Mbps	- 1 Mbps (8 Mbps)	++ 200 Mbps	+++ 2,500 Mbps	+++ 1,000-10,000 Mbps
Determinism /Reliability	++	++	++	++	-
Cable Length (at max speed)	+ 6.1m for transformer -coupled stubs	+ 40m	_ 10m	++ 100m (expected)	++ 200m
Scalability	++	++	+	+	+++

Usual alternatives for aerospace

SAFRAN

The Miura Microlaunchers: Miura 1 & Miura 5

Overview of the Miura Vehicles

- Reusable microlaunchers from PLD Space
- Carry payloads of up to 500 kg to the low Earth orbit
- Places Spain as the 10th country with direct access to space

Miura 1: Sounding rocket & demonstrator

Launched on October 7th, 2023!

Avionics Board FPGA TSN design 4-Port, FPGA-based switch Real-time RTEMS OS

- Custom Ethernet drivers
- Native gPTP integration (Novelty)
- RT task support for avionics
- Standards-driven design
- Low-cost, COTS components
- Automotive-grade Z-7030 SoC
- "New Space" paradigm of design
- Single-engine sounding rocket
- ✓ Carry small payloads of up to 300 kg to LEO

Miura 5: Commercial Vehicle

Ongoing development

- Expected launch at the end of 2025/early 2026
- Larger payloads (up to 500 kgs) & reusable
- Larger vehicle with 5 engine modules and correspondingly higher TSN network complexity
- Same avionics as Miura 1
 - 4-Port FPGA TSN switch with RTEMS OS

System design & Architecture

Embedded avionics with FPGA-based TSN

 Our TSN nodes for avionics use COTS components and a design approach suitable for the "New Space": affordability, open and interoperable standards, agile design, and reusability.

System architecture on a Zynq-7000 SoC device

- ✓ Embedded ARM processor for RTEMS.
- Additional I/O: CAN, GPIO, FMC, ...

Image credit: Ref. [2]

Real-time RTEMS. Determinism down to the "last inch" for TSN

Safe, real-time execution with key differences from other general-purpose OS environments.

Embedded avionics must ...

- Reliably execute different types of tasks.
- Harness real-time OS to schedule transmission during available slots.

Types	Periodic	Monitoring, control loops, emission of housekeeping messages, etc.
of tasks	Sporadic	(one-time) alarms, other system events, network controls, configuration protocols.

Image credit: Ref. [2]

TSN for Miura: Traffic classes & Topology

The use case of Miura 1

	Adupt 1 Counding Decket	-	New Space Vehicle: Low-cost mission, standards-based development.
(ESA GETDEN)	IVIIORA I SOUNDING ROCKEL	-	Suborbital flight → No Radiation hardening, automotive-grade components.
	_	COTS Platform: Zynq-7000 SoCs, Ethernet, TSN, low FPGA footprint.	

Network topolog	Traffic classes		Communication requirements	
PN1 Payload Ring OBC RF Module VIDEO	PN _k : Payload Nodes N _i : Sensor Nodes ECU: Engine Control Unit	Handle the different l Critical Commands	ree main traffic classes with evels of criticality: • Express & Redundant Forwarding. • 10 packets/ms with 400-B payload. • High priority.	 → Implement robust, deterministic avionics bus GCL Settings, Routing, TSN Architecture - Determinism better than 50 μs (15
N5	GND: Ground node		L]	hops) - Latency lower than 500 μs (10 hops)
Main Ring N3		Telemetry	 Express Forwarding. 10 packets/ms with 400-B payload. Medium priority. 	TAS, 802.1Qbu & 802.3br - Reduced jitter - Bounded delivery
N2				802.1CB
ECU N1 GND Image credit: Ref. [1]		Video	 Preemptable Forwarding Best-Effort @ 20 Mbps with 1500-B payload. 	- Data robustness

The use case of Miura 5

- Commercial-grade microlauncher for carrying payloads of up 500 kg to LEO
- Larger, more complex vehicle than the demonstration platform of Miura 1 → Levies new requirements and greater complexity for the control network, traffic classes, system topology

Network topology	Traffic classes	Communication requirements
 Two coupled redundant rings 1st & 2nd Stage 	Critical Commands	 All flows transmitted redundantly using 802.1CB
 Payload, OBC, Sensor, and Engine control modules 	 e.g., high-prio telemetry, mission commands , 	Statically configured paths over the
 ✓ 5-engine vehicle → Larger network & additional traffic classes 	 Medium Priority e.g, mission commands, telemetry, 	TSN to transport highly critical messages
 Convergence of lower-priority monitoring, high-priority control traffic, and mission commands over the same, copper-based 	Best Effort	for engine control, node reports,
Ethernet links	 e.g, some sensor reports, 	 resilience to single-point of failure for data & synchronization
	High-priority gPTP	 Underlying gPTP synchronization with built-in robustness using the best master clock algorithm (BMCA)

Analysis. Miura in the framework of 802.1DP (I)

Communication requirements	802.1DP Analysis		
Determinism			
 Bus determinism of 1 ms with worst-case latency of 1 ms over 15 hops Worst-case closed control loop cycle of 50 ms 	 In keeping with ~ [1 – 100] ms range Loose jitter requirement up to latency limit 		
Synchronization			
 Less than 0.5 ms Realizable: ~ 100 ns with Avnu-based implementation of gPTP Built-in resilience with support for BMCA Single synchronization domain Software service on RTEMS with FPGA support for HW time-stamping 	 Within expected performance Could add support for additional domains Replace BMCA with FTTM 		
Network resilience			
 <i>"Detect any change and reconfigure/adapt the network within 2 ms"</i> Data traffic → zero-time recovery with FRER System synchronization → less than 300 ns during BMCA execution during 1 s 	 No network recovery time appears to be specified in the aerospace profile Definition of upper/lower bounds could benefit the design of new systems and applications 		

Analysis. Miura in the framework of 802.1DP (II)

Communication requirements	802.1DP Analysis
Number of Hops	
 Worst case of 15 hops for end-to-end transmission of all types of traffic 	 Within desirable future use for aerospace systems
Topology	
 Two redundant communication rings per launcher stage All flows, including BE, are sent redundantly using 802.1CB between the nodes Redundant timing paths also available through topology and BMCA 	 Adheres to one of the proposed topologies for aerospace P802.1DP could suggest topology templates per vehicle type: e.g., launchers, aircraft, satellites,
Number of streams	
 32 streams per switch 70 overall flows routed redundantly over the network 	 Lightweight TSN design with reduced number of flows Less than the lower bounds of 802.1DP

Analysis. Miura in the framework of 802.1DP (III)

802.1DP Analysis		
 Synchronous TSN design partially conformant to Type 2 bridges 		
 Up to 32 streams per switch as expected in lower bound of 802.1DP P802.1DP could propose 802.1Qbu & 802.3br to further increase stream isolation 		
 Choice of copper-based links as customary No support for jumbo frames or FCoT 		

SAFRAN

Analysis. Miura in the framework of 802.1DP (IV)

Communication requirements	802.1DP Analysis
Bandwidth & Link utilization	
 Realizable rate on wire of 1-Gb/s Ethernet over copper links Utilization threshold below 10% of realizable rate for final application 	 Actual utilization well below 50%, as expected in 802.1DP
Security & Integrity	
 Data integrity guaranteed through the use of redundant stream transmissions No provisions yet for more advanced data integrity and security mechanisms 	 Integrity through 802.1CB P802.1DP could specify mechanisms such as MACSec or a Root of Trust for data security and to prevent tampering
System Monitoring	
 System health information transmitted in-band as specific TSN streams This includes debugging messages with the operation of the gPTP synchronization stack 	 Monitoring supplied as additional system data, as expected in 802.1DP

Analysis. Miura in the framework of 802.1DP (V)

Communication require	802.1DP Analysis		
End-to-end determinism			
 Real-time applications synchronized to the network Determinism down to the "last inch": Network time + TAS Schedule + App scheduling in RTEMS tied to TAS Schedule 		 Compliance with the upper bound of determinism P802.1DP could provide interfaces & methods for "last-inch" determinism, e.g. PTM for PCIe-based systems & PTP 	J.,
Configuration			
 Static configuration linked into binaries for the avionics firmware Generated at a centralized system configuration module aware of topology & traffic classes 		 Static, centralized configuration applied offline, as expected in 802.1DP 	
Certification			
 Common misconception → "There is no ESA certification" Studying new programs and missions to further advance our design 		 P802.1DP could consider the provision of design guidelines to streamline the transition to specialized aerospace certification activities 	of

Opportunities for advancement

Time Synchronization

- Support greater number of synchronization domains
- Implement a specialized FTTM module

a)

d)

 Research holdover modes as an alternative to maintain synchronization accuracy during system recovery

RT & Determinism to "the last inch"

- MIURA features the RT RTEMS OS with synchronized apps to the network
- P802.1DP could benefit from specifying standardized interfaces and methodologies for synchronizing apps to the network and its corresponding GCL schedule.

Security & Integrity

- Protection against unauthorized tampering and component authentication could be addressed by defining **Root of Trust** mechanisms
- Data Integrity & Security could be addressed through the implementation of MACSec

Certification

- Suggest FPGA/ASIC design rules to streamline subsequent design certification efforts
- Suggest best practices and design templates for early qualification for certification

Real-time & Critical messages

 Support 802.1Qbu & 802.3br for reduced jitter and enhanced stream isolation

b)

C)

e)

Experimental validation & Results

Some results from the Miura boards

Traffic shaping with preemption

- Peak-to-peak: 750 ns Std.Dev.: 20 ns
- gPTP peak-to-peak < 100 ns
- No losses with link failures

End-to-end latency

Tau (s)

Baseline latency test

- 4 hops & No GCL shaping
 - ~ 23 µs @ 60 B (4 hops)
 - ~ 35.48 µs @ 300 B (4 hops)

FPGA footprint (Xilinx Z7030 SoC)

FPGA Primitives	VLAN + Redundancy	Dropper	TAS + Preemption	Switching Interconnects	Common Infrastructure (DMA, MAC, TSU,)	Total Resource Utilization
Slice Registers	4550	2090	3170	1490	12840	39%
Slice LUT	4160	1120	1820	1800	10440	57%
BRAM	3,5	0	20	9	12	53%
DSP	8	34	0	0	0	13%
MMCM + PLL	0	0	0	0	1	40%

Overall ~ 50% utilization for Z7030 SoC devices

Overall ~30% utilization for Z7045 SoC devices

Conclusions & Lessons learned

Conclusions

Miura has pioneered an early application of TSN for aerospace with significant performance results which can benefit from including the latest specifications from 802.1DP. Likewise, we believe that some lessons learned from our experience with Miura (and beyond) could further improve the definition of 802.1DP.

Real-time OS	New Space Design	TSN results for aerospace
 RTEMS RT OS, as commonly used in avionics Custom interface to synchronize applications to the network Native gPTP implementation 	 Use of commercial, off-the-shelf elements (COTS) with fast development & standards (TSN, Ethernet) Industrial- & automotive-grade components 	 gPTP synchronization @ ~ 100 ns E2E latency over 15 hops lower than 200 μs Worst-case GCL-shaped jitter of up to ~700 ns Robust timing and data transfer with BMCA and FRER, respectively Reduced FPGA footprint: 50% (Z7030) & 30% (Z7045)
Prelimary TSN for Space	Certification	Lessons learned for 802.1DP
 gPTP, TAS w/preemption, VLAN tagging, FRER, preemptable MAC Scalable EPGA-based design 	 *There is no ESA certification* Ongoing: Trying to locate suitable programs to advance our design 	 Certification processes & best practices could be addressed Explore new methods for timing robustness, such as holdover modes Improve stream isolation and reduce jitter with 802.1Qbu &
 Scalable FFGA-based design Lightweight implementation with 32 streams per node 	 P802.1DP could suggest best practices & design rules to simplify the start of a certification process 	 802.3 br Standardize interfaces to synchronize apps with the network for RT OS environments Consider the use of MAC Sec & Root of Trust

POWERED BY TRUST

References

 J. Sanchez-Garrido et al., "Implementation of a time-sensitive networking (TSN) Ethernet bus for
 [1] microlaunchers," in IEEE Transactions on Aerospace and Electronic Systems, doi: 10.1109/TAES.2021.3061806.

Jorge Sánchez Garrido, Luis Medina Valdés, Rafael Rodríguez, Javier Díaz, "Cost-optimized TSN
 [2] platform for aerospace applications based on RTEMS OS," presented at TSN/A Conference, [Online], Oct. 7-8, 2020.

J. Sanchez-Garrido, "Time-sensitive networks based on ultra-accurate synchronization mechanisms,"

[3] Ph.D. dissertation, Dept. Comp. Arch. Tech., Univ. Granada, Granada, Spain

 L. Medina, M. Melara, and L. Cercós. "An IPCORE for Deterministic Ethernet via Time Sensitive Networking (TSN) light implementation: challenges and opportunities", in 13th ESA Workshop
 [4] ADCSS. Noordwijk, The Netherlands, Nov. 12-14, 2019. [Online]. Available: https://indico.esa.int/event/323/contributions/5043/attachments/3745/5201/12.30_-____An_IPCORE_for_Deterministic_Ethernet_via_TSN_..._.pdf

