FTTM Change Summary for ®
Comment Resolutions ® MICROCHIP

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Richard Tse
June 5, 2024

Major categories of changes

* Highlight “integrity” (per proposed PAR for P802.1ASed)
* Uniquely identify FTTM operation with single time input
 Change FTTM inputs from “domain” to “time”

* Only have one default algorithm

* Use 802.1Q’s state-machine structure

* Make states atomic w/o infinite state looping

* Define all variables/parameters

@ MICROCHIP

Highlight Integrity
* Added subclauses on availability and on integrity and trust

19.2.1 Availability of time

The continuous availability of time is enhanced by redundancy. For gPTP. this redundancy can be
implemented by using multiple time domains, multiple time distribution paths, and multiple gPTP instances
in Bridges and end stations.

19.2.2 Trust and Integrity of time

For this standard, a trusted time 15 one that passes a specified criterion that identifies it as being within a
safe bound of a non-faulty time and 1s, thus, safe to use. This establishment of trust gives integrity to the
time.

For gPTP. trust, and hence integrity, can be established through the comparison of the times coming from

independent time sources and the observation that they match within the specified criterion. See 1927 4
for an example of such a criterion.

@ MICROCHIP

Highlight integrity, operation with single time

* Replaced “redundant” with “trust” in the algorithms
* Added the following to FTTM introduction (19.3)

The availability and integrity scenarios supported by the FTTM are listed below.

— Enhanced availability and integrity scenario:
This scenario operates with multiple times and multiple domains.
In this mode, the FTTM supports increased availability and integrity.
— Enhanced availability and limited integrity scenario:
This scenario operates with multiple times and a single domain_
In this mode, the FTTM supports increased availability and potential time distribution integrity, l:mt|
not GM integrity.
— Regular availability and no integrity scenario:
This scenario operates with a single time and, hence, a single domain.

In this mode, the FTTM does not support increased availability or integrity.

@ MICROCHIP

Change FTTM inputs from “domain” to “time”

 Functional block

OSC_CLK

diagram redrawn '
e DDSA renamed to DTSA
* IDSA renamed to ITSA ¢

ClockTarget interfaces

ClockTarget
interface(s) of
FTTM_OUTPUT
-

Depgndent Time Independent Time
Selection Algorithm Selection Algorithm
o (DTSA) #1 (ITSA)
U o -
24
[>
SE |
£ [J
DTSA# 2
+= O
(= Al
(CRT}
29 fl I
[T H
SE [na
TS
DTSA# X
E)< I
[OR] s
T wu T
Soll:
(] .
gg INa
o=
(%]
(O]
£
c S S
%
g —t »
3
= | NO. >
/

@ MICROCHIP

Only have one default “algorithm”

* “Closest-pair algorithm” removed

* “Mid-value selection algorithm” retained and renamed to “Mid-
value time-index selection process” (MVTISP)
* DTSA and ITSA are “algorithms”
* MVTISP is the “process” used by the default DTSA and the default ITSA

* “time-index” clarifies that the index is selected and not the time

@ MICROCHIP

State-machines

e Use 802.1Q’s state-machine structure
* New state-machine defined for default DTSA

* New state-machine defined for default ITSA

* Formerly called the default FTTM state-machine

* Mid-value time-index selection process (MVTISP)

* Has no states
* Isruninthe SELECT_TIME_INDEX state of the new default DTSA/ITSA state-machines
* |s shown by pseudo-code
* States are atomic without infinite looping
» Default DTSA/ITSA state machines use the ClockTargetEventCapture application interface

* ClockTargetEventCapture.invoke events are used to gather new time information (via
ClockTargetEventCapture.response) and start a new round of state transitions

@ MICROCHIP

BEGIN

l

INITIALIZE

Iltsa_mode = FALSE
num_time_indexes = user assigned
med_time_index = NQ
med_next_time_index=NQ
prev_trust_status = NO_TRUST

For (x =1; x<= num_time_indexes - 1, x++)

{

For (y = x+1;y <= num_time_indexes - 1, y++)
{
maxAs[x][y] = user assigned
hyst[x][y] = user assigned
prev_time_index_pair_status[x][y] =

UNTRUSTED

1

}

ﬁ i UcT

INVOKE_CLOCKTARGET_IF

Simultaneously invoke gathering of all
ClockTarget interface results by using:

ClockTargetEventCapture.invoke

Default DTSA state machine

reception of results from all ClockTarget
interfaces via:
ClockTargetEventCapture.result

and optionally:
ClockTargetPhaseDiscontinuity.result

v

ASSIGN_LOOP_VARIABLES

For (x =1; x<= num_time_indexes - 1, x++)
{
isSynced_status[x] = isSynced[x]
gmPresent_status[x] = gmPresent[x]
ToD[x] = timeReceiverTimeCallback[x]

}
l UCT

SELECT_TIME_INDEX

Run the mid-value time-index selection process
(MVTISP)

l UCT

DTSA_OUTPUT

DTSA_OUTPUT = ClockTarget Interface
corresponding to
selected_time index= MEDIAN_TIME_INDEX

UCT

@ MICROCHIP

num_time_indexes ==

BEGIN

ONE_INDEX

INITIALIZE 1

ITSA_OUTPUT = ClockTarget Interface
corresponding to
time index=1

Itsa_mode = TRUE
num_time_indexes = user assigned
rRlimit = user assigned

rRSDlimit = user assigned
prev_trust_status = NO_TRUST
allowed_TF = ANY_TF
med_time_index = NQ
med_next_time_index=NQ

num_time_indexes =1

INITIALIZE 2

For (x =1; x<= num_time_indexes - 1, x++)

{

For (y = x+1; y <= num_time_indexes - 1, y++)
{
maxAs[x][y] = user assigned
hyst([x][y] = user assigned
prev_time_index_pair_status[x][y] =

UNTRUSTED

+ v uct

INVOKE_CLOCKTARGET_IF

Simultaneously invoke gathering of all
ClockTarget interface results by using:

ClockTargetEventCapture.invoke

interfaces via:

and optionally:

A\

ASSIGN_LOOP_VARIABLES

For (x =1; x<= num_time_indexes - 1, x++)
{
isSynced_status[x] = isSynced[x]
gmPresent_status[x] = gmPresent[x]
ToD[x] = timeReceiverTimeCallback[x]

}

Default ITSA state machine

Y

SELECT_TI

IME_INDEX

Run the mid-value time-index selection process

(|itsaRateRatio[med_time_index]| < |mean(itsaRateRatio[med_time_index])| +

(MVTISP)
ELSE
(prev_trust_status == FREQ_TRUST) &&
+ rRlimit) &&
(Std_Dev(itsaRateRatio[med_time_index]) < rRSDIlimit)
NO_TRUST
prev_trust_status == NO_TRUST
prev_trust_status == TIME_TRUST
ITSA_OUTPUT = ClockTarget Interface
corresponding to
selected_time index = NQ
uct 4
TIME_TRUST

reception of results from all ClockTarget

ClockTargetEventCapture.result

ClockTargetPhaseDiscontinuity.result

ITSA_OUTPUT = ClockTarget Interface
corresponding to
selected_time index = MED_TIME_INDEX

A

FREQ_TRUST

corresponding to

selected_time index = MED_TIME_INDEX

T
|
|
|
|
|
|
|
| ITSA_OUTPUT = ClockTarget Interface
|
|
|
|
|
|
|
|

@ MICROCHIP

10

Mid-value time-index selection

process

L

// Gather the current skews between the JgDs of all the time indexes.

it
For (x = 1; x <= pum.time_ dindexes - 1, x++) {
For (y = x + 1, y <= pum.time indexes, y++) {
W[1[y1 = |TeR[x] - IeR[v]|

L

// Clear status before starting a new round of time index comparisons.

L

Erust sktatus = NO_TRUST
time dindex pair. status[«][y] = UNTRUSTED for all x and all y
time_index siatus[x] = UNTRUSTED for all x

sxclude tims indsx[x] = FALSE for all x

L

// Find all trusted time indexes, considering hysteresis.

L

For (x = 1, x <= pum.time_ dindexes - 1, x++) {
For (y = x + 1, y <= pun.time.dndsxes, y++) {

if ((ToRDAff[x1[y] <= maxds[x][y] &R
preyv. time_index_pair_status[x][y] == UNTRUSTED) ||
(TR DAEf[x][y] <= (maxAs[x][y] + hust[x][y]) 2&
prev.time index pair.status[x][y] == TRUSTED)) a8
(issynced status[x] && gmPresent.status[x]) &&

; (issynced.status[y] && gmRresent.status[y]))
// trust found for the pair
toustostatus = TIME_TRUST
time index pair.stagus[x]1[y] = TRUSTED
time.index. .status[x] = TRUSTED
time index.status[y] = TRUSTED
prevtime dndex paic. status[x][y] = TRUSTED

1

else
// trust not found for the pair
preyv.time index pair. status[x][y] = UNTRUSTED

b

1
b

s
// If trustoskatus = TIME_TRUST, find time index with the mid-walue JgD.
I
// Trusted times detected

If {trust.status == TIME_TRUST)
{

// Update previous trust status.

prev.trustostatus = TIME_TRUST

// sort all trusted time indexes in order of their JgD, from smallest
// to largest using two loops.
// Outer loop iterates over all time indexes.
For (x = 1, x <= pum.time_indexes, x++) {
min.valug = 2748 seconds // Start with JgD value that is larger
// than any possible gPIP ToD value.
// Inner loop finds and records the time index with the minimum TgD
// value and excludes it from further iterations of the outer loop.
For (y = 1, y <= pum.gime.dndexss, y++) {
if (time_index_status[y] == TRUSTED &%

exclude_time_index[y] == FALSE 2&
{ TeDly] <= min.valus)

min.value = JaR[y] // record latest min JgR wvalue found in the
// inner loop

ardered time index[num sorted] = vy // record latest time index
// with min JgD value
1

}
J/{ Exclude latest time index with the min JgD wvalue and add to sort index
exclude time index[ordeced time_index[num sorted]] = TRUE
nun.serted = num.soried + 1

1

// Get median trusted time index and the trusted time index with

// the next higher Igp.

//{ The lower time index is selected if the number of trusted time

// indexes is even.
med.time index
nednexk bine.dndsx

ordered time index[INT((num_serted)/2)]
ordeced. time. dndex [INT ((num.2octed)/2)+1]

}

// I itsa.mode, check for transition to or sustaining frequency trust state.
[/ If time trust just lost or if already using frequency trust, keep
// existing median time index values if corresponding PTP Instance
// is still valid.
// set previous trust status to FREQ_TRUST.
else if {itsa mode == TRUE &&

prey trust_status == (TIME_TRUST || FREQ_TRUST) &

issynced status[med time dndex) == TRUE &
gnbresent. status (med time_index) == TRUE)
1

prev_trust_stafus = FREQ TRUST
}

// No time trust or frequency trust so set output time indexes to NQ
// and clear previous trust status to NO_TRUST.
else

{

s e
prev.trust.status = NO_TRUST

@ MICROCHIP

11

Define all variables/parameters

 Management objects proposed in 14.23

* Define all variables for MVTISP
* Mostly done (see 19.3.3.2.1)

* Need to define object types for all the vectors and arrays
* Define all variables for default DTSA/ITSA state-machines

 Still in progress...

@ MICROCHIP

12

Outlook

* Plan to finish the following within a few weeks:

* Have all variables for default DTSA/ITSA described with appropriate
object types in a couple of weeks

* Do further updates based on comments received from this meeting or
subsequent interactions

* Other:
* Need help on YANG model

* Do we need objects to connect FTTM inputs to DTSA/ITSA, DTSAs to

ITSA, and ITSA to FTTM output?
* Management objects for this are proposed in 14.23

@ MICROCHIP

Thank You

	Slide 1: FTTM Change Summary for Comment Resolutions
	Slide 2: Major categories of changes
	Slide 3: Highlight Integrity
	Slide 4: Highlight integrity, operation with single time
	Slide 5: Change FTTM inputs from “domain” to “time”
	Slide 6: Only have one default “algorithm”
	Slide 7: State-machines
	Slide 8: Default DTSA state machine
	Slide 9: Default ITSA state machine
	Slide 10: Mid-value time-index selection process
	Slide 11: Define all variables/parameters
	Slide 12: Outlook
	Slide 13

