Generic TSN end-to-end guideline

How to use TSN

Lihao Chen (<u>lihao.chen@huawei.com</u>) Tongtong Wang (<u>tongtong.wang@huawei.com</u>) Yanjie Gong (<u>garrett.gong@se.com</u>) Yi Yan (<u>yanyi@inovance.com</u>) Zheng Yang (<u>yangzheng@tsinghua.edu.cn</u>) Zongpeng Du (<u>duzongpeng@chinamobile.com</u>)

A quick look back on AVB

- IEEE 802.1BA AVB Systems
 - > 802.1Qat Stream Reservation Protocol for resource reservation.
 - > 802.1Qav Credit-Based Shaping for transmission selection.
 - > 802.1AS Timing and Synchronization for upper layer usage.
- Not only 802.1
 - > IEEE 1722 AVTP, IEEE 1722.1 AVDECC, ...

• These designs are interrelated, and they combine together to form an **end-to-end solution**.

> End-to-End: from the sender's application to the receiver's application.

• The author is not saying that we need to define new upper-layer protocols for TSN.

Why a generic TSN end-to-end guideline is needed?

- How to use TSN(AVB) for time-sensitive audio and/or video applications?
 - > Buy 802.1BA conformance bridges and end-stations.
 - > Develop apps based on AVBTP. The AVBTP uses Ethernet AVB which provides StreamID and timestamps.
- How to use TSN for industrial automation applications?
 - > Buy IEC/IEEE 60802 conformance bridges and end-stations.
 - > Develop apps based on the X protocols (PROFINET, OPA UA, etc.), which is Ethernet TSN based.
- How to use TSN for automotive In-Vehicle applications, aerospace onboard applications, ...?
- How to use TSN for any other time-sensitive applications?
 - > The author believes that a TSN guideline for generic time-sensitive scenarios would be very helpful.

Why a generic TSN end-to-end guideline is needed? Cont.

Some voices from the users:

- I know TSN and I agree it's useful, but I don't see many mature end-to-end TSN based solutions.
- Can I try it? Maybe. It would be great if you give me some references. And I also have concerns...
 - > The implementation of TSN is complex, and the scheduling algorithm is very difficult.
 - > While there are many TSN switches available, there are few market-level TSN end-station devices.

Some voices from the venders:

- I don't see users asking for TSN end-station devices.
- Can I produce it? Maybe. It would be great if you give me some references. And I also have concerns...
 - > TSN end-stations rely on TSN specific hardware. It adds costs and complexity.
 - > There are thousands of pages of standard (and mostly about bridges). It's hard to know what to do.
- These thoughts have also slowed down the progress of TSN application implementation.
- The Generic TSN end-to-end guideline can inform stakeholders of baseline examples for deploying a TSN system, which minimizes the need for 'TSN-dedicated' hardware and software, especially on the end-station side.

> E.g., the scheduling/gating/TAS/Qbv..., preemption, PSFP, FRER, and so on are added-on options, but not a must.

Proposal

- A Generic TSN end-to-end guideline, showing examples, but not dictate you must do this or that.
 > A new standalone draft / Annex to .1DC (may not perfectly fit) / Annex to .1Q.
- Content: List the fundamental factors that need to be considered.
- > The usage of transmission selection schemes.
- > The collaboration between end-stations and bridges.

A basic option is to use Strict Priority (802.1Q 8.6.8.1)

Proposal

- A Generic TSN end-to-end guideline, showing examples, but not dictate you must do this or that.
 > A new standalone draft / Annex to .1DC (may not perfectly fit) / Annex to .1Q.
- Content: List the fundamental factors that need to be considered.
- > The usage of transmission selection schemes.
- > The collaboration between end-stations and bridges.

Strict Priority (802.1Q 8.6.8.1) and time synchronization

Proposal

- A Generic TSN end-to-end guideline, showing examples, but not dictate you must do this or that.
 > A new standalone draft / Annex to .1DC (may not perfectly fit) / Annex to .1Q.
- Content: List the fundamental factors that need to be considered.
- > The usage of transmission selection schemes.
- > The collaboration between end-stations and bridges.

End-sta	tion		End-station
Арр	Send with an	Basetime + N*C	Арр
	interval of C ms	Offset	-
OS	Protocol stacks: UDP		OS OS
kernel	IP ETH	Basetime + (N+1)*C	kernel
	·		· · · · · · · · · · · · · · · · · · ·
NIC	Sending of Basetime	t Data path	
Sender	Dusctime	The Synchronization	Receiver

Another example using Enhancements for scheduled traffic (802.1Q 8.6.8.4) with time synchronization.

Backup information 1 - potential additional contents

Backup information 2

- P802.1DC specifies procedures and managed objects for QoS features specified in IEEE Std 802.1Q in a network system which is not a bridge (An end system or a forwarding system).
- The generic TSN end-to-end guideline includes more other than .1Q on the end system part.

End system functions for the generic TSN end-to-end guideline

Protocol

stacks: UDP IP